\(Timxbiet\): \(\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}+\frac{x+4}{2004}=4\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được :
\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
<=> x - 2005 = 0
<=> x = 2005
Vậy ...............
Tìm x biết: \(\frac{X-1}{2004}+\frac{X-2}{2003}-\frac{X-3}{2002}=\frac{X-4}{2001}\)
\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
=> \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)
=> \(\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
=> \(\left(x-2005\right).\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Vì \(\frac{1}{2004}< \frac{1}{2002}\); \(\frac{1}{2003}< \frac{1}{2001}\)
=> \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)
=> \(x-2005=0\)
=> \(x=2005\)
Vậy \(x=2005\)
Tìm x biết :
\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
Ta có: \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
\(\Leftrightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
\(\Leftrightarrow\frac{x-1-2004}{2004}+\frac{x-2-2003}{2003}=\frac{x-3-2002}{2002}+\frac{x-4-2001}{2001}\)
\(\Leftrightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)
=> x - 2005 = 0
=> x = 2005
Vậy x = 2005
Tìm x, biết:
\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
=> (x - 1)/2004 - 1 + (x - 2)/2003 - 1 = (x - 3)/2002 -1 + (x - 4)/2001 - 1
=> (x - 2005)/2004 + (x - 2005)/2003 = (x - 2005)/2002 + (x - 2005)/2001
=> (x - 2005)/2004 + (x - 2005)/2003 - (x - 2005)/2002 - (x - 2005)/2001 = 0
=> (x - 2005) * ( 1/2004 + 1/2003 - 1/2002 - 1/2001) = 0
Ta thấy ( 1/2004 + 1/2003 - 1/2002 - 1/2001) khác 0
=> x - 2005 = 0
=> x = 2005
\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
\(\Leftrightarrow\)\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-4}{2001}+\frac{x-3}{2002}\)
\(\Leftrightarrow\)\(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\)\(\frac{x-4}{2001}-1+\frac{x-3}{2002}-1\)
\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}\)\(=\frac{x-2015}{2001}+\frac{x-2005}{2002}\)
\(\Leftrightarrow\)\(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2001}-\frac{x-2005}{2002}=0\)
\(\Leftrightarrow\)( x - 2005 ) ( \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\)) = 0
Do \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2001}-\frac{1}{2002}\)\(\ne\)0
\(\Rightarrow\)x - 2005 = 0
\(\Leftrightarrow\)x = 2005
Vậy x = 2005
Giải phương trình
a, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}\frac{x+4}{2001}\)
b, \(\frac{201-x}{99}+\frac{205-x}{97}+\frac{205-x}{95}+3=0\)
c, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
b) Sửa đề :
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x=300\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)
\(\Leftrightarrow x=2004\)
Vậy....
tìm x biết
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
De thay \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}< 0\Rightarrow x+2005=0\)
\(\Rightarrow x=-2005\)
Bài giải
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
\(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Do : \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\)
\(\Rightarrow\text{ }x+2005=0\)
\(x=0-2005\)
\(x=-2005\)
2 bạn đều thiếu dấu ngoặc phải là thế này:
\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)=\left(\frac{x+3}{2002}+1\right)+\left(\frac{x+4}{2001}+1\right)\)
sau đó mới đc đến phần tiếp :
2 bạn chỉ cần chỉnh như vậy là bài làm hoàn chỉnh.
!học tốt!
\(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
tìm x
\(\frac{X+1}{2004}+\frac{X+2}{2003}\) Bằng \(\frac{X+3}{2002}\:+\:\frac{x+4}{2001}\)
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\\
\)
Cộng từng hạng tử của hai vế với 1
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}=\frac{x+3+2002}{2002}+\frac{x+4+2001}{2001}\)
\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2002}=0\)
\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Vì \(\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)\ne0\)nên \(x+2005=0\Rightarrow x=-2005\)
Phương trình có nghiệm duy nhất: x=2005
(x+1)/2004+(x+2)/2003=(x+3)/2002+(x+4)/2001
(x+1)/2004+1 +(x+2)/2003 +1=(x+3)/2002+1 (x+4)/2001+1
=> x+2005/2004+(x+2005)/2003-(x+2005)/2002-(x+2005)/2002=0
(x+2005)(1/2004+1/2003-1/2002-1/2001)=0
=>x+2005=0
=>x=-2005