3.Chứng tỏ a=n^3+17n chia hết cho 6 với n thuộc Z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ rằng nếu 17n2+1 chia hết cho 6 với n thuộc N* thì (n,2)=1 và (n,3)=1
17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2
Mà 2 nguyên tố => (n,2) = 1
17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3
Mà 3 nguyên tố => (n,3) = 1
=> ĐPCM
k mk nha
Chứng tỏ: A= n3 -17n chia hết cho 6
Giả sử n = 1 , ta có:
A= 13 - 1.17
= 1 - 17 = -16
Không chia hết cho 6
sai
ví dụ n>2
giả sử n=3
=>33-17.3=-24 chia hết cho 6
Chứng tỏ n^3 + 3n^2 + 2n chia hết cho 6 với n thuộc Z.
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
2.Chứng tỏ n thuộc Z thì A=n^3-7n chia hết cho 6
CMR n3+17n chia hết cho 6 với mọi n thuộc N
2.Chứng tỏ n thuộc Z thì A=n^3-7n chia hết cho 6
\(A=n^3-n-6n\)
\(=n\left(n-1\right)\left(n+1\right)-6n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
hay A chia hết cho 6
chứng tỏ;n^3-n chia hết cho 6(n thuộc Z)
Cristiano Ronaldo dễ thì làm con mệ nó đi chứ cứ ở đấy mà nói dễ thì đứa nào chả nói đc
n3-n =n.(n2-1)=n.(n2-12) = n.(n-1).(n+1)
Vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên:
+)Tồn tại một số chi hết cho 2 =>n3-n chia hết cho 2 (1)
+)Tồn tại một số chia hết cho 3=>n3-n chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (2;3)=1
=>n3-n chia hết cho (2.3)
=>n3-n chia hết cho 6 (đpcm)
Chứng tỏ n thuộc Z thì A = n^3 - 7n chia hết cho 6
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm
\(n^2+n+3=n\left(n+1\right)+3\)
Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ
Vậy n^2+n+3 ko chia hết cho 2