Những câu hỏi liên quan
MT
Xem chi tiết
BS
Xem chi tiết
PQ
1 tháng 7 2017 lúc 8:35

     (2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018
=>  2016x - 2017y  -  2016x + 2018z +  2017y - 2018z  = 2018
=>  2016x - 2016x + 2017y - 2017y + 2018z - 2018z     = 2018
=>           0x         +          0y         +          0z             = 2018 (vô lí)
Vậy không tìm được các số nguyên x, y, z thỏa mãn đề bài

Bình luận (0)
H24
17 tháng 4 2018 lúc 12:40

(2016x - 2017y) - (2016x - 2018z) + (2017y - 2018z) = 2018

=> 2016x - 2017y - 2016x + 2018z + 2017y -2018z   = 2018

=>  2016x - 2016x  + 2017y  - 2017y + 2018z  - 2018z=2018

=>    0x             +               0y                     +               0z=2018(vô lý)

Vậy ko tìm được các số nguyên x,y,z thoả mãn đề bài.     

Bình luận (0)
US
Xem chi tiết
LH
4 tháng 1 2017 lúc 22:28

Theo đề bài ta có

\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)

Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)

\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)

\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)

\(\Rightarrow f\left(x\right)=x-1\)

\(\Rightarrow f\left(2015\right)=2015-1=2014\)

Vậy f(2015)=2014

Bình luận (0)
NV
Xem chi tiết
PN
Xem chi tiết
NT
3 tháng 7 2022 lúc 21:02

Câu 2: 

Vì \(x^2+2017\ge2017>0\) 

nên g(x) vô nghiệm

Bình luận (0)
PA
Xem chi tiết
H24
20 tháng 12 2019 lúc 20:54

+, Nếu x = 0 hoặc x = 1  ; y = 0 hoặc y = 1  thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )

+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )

Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán 

Vậy không tồn tại ......

Hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
PA
21 tháng 12 2019 lúc 6:19

mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé

Bình luận (0)
 Khách vãng lai đã xóa
H24
21 tháng 12 2019 lúc 20:28

Nếu là số nguyên thì cậu cứ thử như vậy thì cũng có trường hợp nào thỏa mãn đề bài .

Hok tốt 

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết