Những câu hỏi liên quan
HS
Xem chi tiết
NH
6 tháng 3 2022 lúc 22:19

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

Bình luận (0)
PV
Xem chi tiết
H24
Xem chi tiết
H24
17 tháng 7 2017 lúc 9:53

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

Bình luận (0)
H24
17 tháng 7 2017 lúc 8:09

1)

f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)

2)

<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên

Bình luận (0)
H24
17 tháng 7 2017 lúc 9:47

<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)

từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}

x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }

a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)

Bình luận (0)
NL
Xem chi tiết
AO
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Bình luận (0)
NL
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Bình luận (0)
CN
Xem chi tiết
H24
27 tháng 11 2021 lúc 21:14

\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)

\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)

\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)

\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)

\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)

\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

 

Bình luận (0)
NM
27 tháng 11 2021 lúc 21:27

\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)

Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ 

\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)

Bình luận (0)
MD
Xem chi tiết
NL
13 tháng 1 2021 lúc 23:39

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

Bình luận (0)
NL
13 tháng 1 2021 lúc 23:43

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

Bình luận (0)
BM
Xem chi tiết
LH
19 tháng 9 2018 lúc 21:47

a, \(x^2+2=2\sqrt{x^2+1}\)

\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)

\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)

b,\(x^2+x+2y^2+y=2xy^2+xy+3\)

\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)

\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)

\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)

đoạn sau bạn tự giái tiếp nhé

Bình luận (0)
H24
19 tháng 9 2018 lúc 21:50

a) \(x^2+2=2\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)

\(\Leftrightarrow x=0\)

Bình luận (0)
AN
20 tháng 9 2018 lúc 8:54

a/ \(x^2+2=2\sqrt{x^3+1}\)

\(\Leftrightarrow\left(x^2+2\right)^2=4\left(x^3+1\right)\)

\(\Leftrightarrow\left(x-2\right)^2x^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Bình luận (0)
VH
Xem chi tiết
PD
27 tháng 3 2021 lúc 13:39

\(x^2+x+xy-2y^2-y=5\)

\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)

\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)

\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)

\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)

Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)

Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)

Do đó \(\left(x-y\right)\inℤ^+\)

Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))

\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))

Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
27 tháng 3 2021 lúc 13:40

Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
DH
19 tháng 7 2021 lúc 11:10

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

Bình luận (0)
 Khách vãng lai đã xóa