Những câu hỏi liên quan
HM
Xem chi tiết
LL
31 tháng 8 2021 lúc 10:08

\(A=x^2-14x+50=\left(x^2-14x+49\right)+1=\left(x-7\right)^2+1\ge1>0\forall x\)

Bình luận (0)
H24
31 tháng 8 2021 lúc 10:12

\(=(x^2-2.7.x+7^2)+1\)

\(=(x-7)^2+1\)

\(Vì (x-7)^2\)\(\ge\)0\(\forall\)\(x\) \(\Rightarrow\)\((x-7)^2+1\)\(\ge\)\(1\)\(\forall\)\(x\)

\(hay x^2-14x+50 >0\)\(\forall\)\(x\)

Bình luận (0)
NH
31 tháng 8 2021 lúc 10:12

\(A=x^2-14x+50=\left(x^2-14x+49\right)+1=\left(x-7\right)^2+1\ge1>0\forall x\)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 1 2017 lúc 12:17

Giải bài 62 trang 50 SGK Toán 7 Tập 2 | Giải toán lớp 7

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 4 2019 lúc 5:28

P = x2 - 2x + 2 = (x – 1)2 + 1

Do (x – 1)2 ≥ 0 ∀x nên (x – 1)2 + 1 ≥ 1 ∀x

Vậy P luôn lớn hơn 0 với mọi x.

Bình luận (0)
LA
Xem chi tiết
LG
16 tháng 4 2018 lúc 21:02

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

Bình luận (0)
PA
7 tháng 7 2020 lúc 16:21

Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến

f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9

c) Tính f(x) + g(x); f(x) - g(x)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9

= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )

= -2x5 - 14x4 - 2x3 -x2 + 7x + 18

Bình luận (0)
 Khách vãng lai đã xóa
LD
7 tháng 7 2020 lúc 17:48

a) P(x) = x5 - 3x2 + 7x4 - 9x3 + x2 - 14x

            = x5 + 7x4 - 9x3 - 2x2 - 14x

Q(x) = 5x4 - x5 + x2 - 2x3 + 3x2 -14

        = -x5 + 5x4 - 2x3 + 4x2 - 14

b) P(x) + Q(x) =  x5 + 7x4 - 9x3 - 2x2 - 14x - x5 + 5x4 - 2x3 + 4x2 - 14

                       = 12x4 - 11x3 + 2x2 - 14x - 14

P(x) - Q(x) = ( x5 + 7x4 - 9x3 - 2x2 - 14x ) - ( -x5 + 5x4 - 2x3 + 4x2 - 14 )

                  = x5 + 7x4 - 9x3 - 2x2 - 14x + x5 - 5x4 + 2x3 - 4x2 + 14

                  = 2x5 + 2x4 - 7x3 - 6x2 - 14x + 14

c) P(0) = 05 + 7.04 - 9.03 - 2.02 - 14.0 = 0 

=> x = 0 là nghiệm của P(x)

Q(0) = -05 + 5.04 - 2.03 + 4.02 - 14 = 0 - 14 = -14\(\ne\)0

=> x = 0 không phải là nghiệm của Q(x) 

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NC
27 tháng 1 2023 lúc 19:48

c + bx + ax = a - b+c=0

 

 

 

 

Bình luận (0)
PD
27 tháng 1 2023 lúc 20:04

P(x)= 0 với mọi x nên:

thay x = 0 => c=0;

thay x = 1 => a+b=0;

thay x=-1 => a-b=0;

=>Đpcm

Bình luận (0)
NT
Xem chi tiết
NT
29 tháng 7 2023 lúc 10:14

a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2

=x^4y^2+x^2+1

Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3

b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y

=>A luôn dương với mọi x,y

Bình luận (0)
NK
Xem chi tiết
LT
14 tháng 5 2021 lúc 10:57

nghiệm là 2 mà

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 5 2021 lúc 13:08

\(x^2+2x-8=x^2+2x+1-9\)

mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)

\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)

giả sử đa thức trên có nghiệm khi 

Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)

Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm ) 

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
XO
21 tháng 4 2021 lúc 23:12

Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)

=>A(x) > 0 \(\forall x\inℝ\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
21 tháng 4 2021 lúc 23:13

thanks bạn

Bình luận (0)
 Khách vãng lai đã xóa
CM
Xem chi tiết
DT
14 tháng 6 2016 lúc 9:48

A(x)=x4+2x2+4

=x4+x2+x2+1+3

=x2.(x2+1)+(x2+1)+3

=(x2+1)(x2+1)+3

=(x2+1)+3>0 với mọi x thuộc R

Bình luận (2)
NV
18 tháng 6 2016 lúc 20:16

bài bao nhiêu đấy chang

 

Bình luận (1)