Những câu hỏi liên quan
TC
Xem chi tiết
TL
Xem chi tiết
NH
13 tháng 3 2017 lúc 14:18

ĐKXĐ: \(x\ge2\)

pt \(\Leftrightarrow\left(2x-6\right)+\left(3\sqrt{x-2}-\sqrt{x+6}\right)=0\)

\(\Leftrightarrow2\left(x-3\right)+\frac{9\left(x-2\right)-\left(x+6\right)}{3\sqrt{x-2}+\sqrt{x+6}}=0\)

\(\Leftrightarrow2\left(x-3\right)+\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(2+\frac{8}{3\sqrt{x-2}+\sqrt{x+6}}\right)=0\) (1)

Với \(x\ge2\Rightarrow2+\frac{8}{3\sqrt{x-2}+\sqrt{x+6}}>0\)

(1) <=> x-3=0 <=> x=3 (tm ĐKXĐ)

Vậy x=3

Bình luận (0)
KT
Xem chi tiết
NT
28 tháng 5 2019 lúc 22:35

ĐK: \(-3\le x\le2\)

Đặt: \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{2-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\b=1\left(tm\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=1\\\sqrt{2-x}=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+3=1\\2-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\) (tm)

Vậy....

Bình luận (0)
H24
Xem chi tiết
H24
10 tháng 3 2020 lúc 11:53

mình sửa đề câu 1 

\(x^2-3x-6+\sqrt{x^2-3x}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
GL
10 tháng 3 2020 lúc 11:56

\(ĐK:x\le12\)

Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)

PT trở thành a+b=6

Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)

Đến đây đơn giản rồi nhé

Bình luận (0)
 Khách vãng lai đã xóa
GL
10 tháng 3 2020 lúc 12:00

\(x^2-3x-6+\sqrt{x^2-3x}=0\)

\(ĐK:\orbr{\begin{cases}x\le0\\x\ge3\end{cases}}\)

Đặt \(\sqrt{x^2-3x}=a\left(a\ge0\right)\)

\(PT\Leftrightarrow a^2-6+a=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2\left(tm\right)\\a=-3\left(loai\right)\end{cases}}\)

\(\Rightarrow x^2-3x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NM
20 tháng 12 2015 lúc 10:44

cai nay la hag dag thuc phan tih ra la dk

Bình luận (0)
AH
25 tháng 3 2016 lúc 20:15

pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)

dấu = xãy ra khi x=1/2

Bình luận (0)
ND
Xem chi tiết
HN
Xem chi tiết
AH
15 tháng 6 2021 lúc 1:14

Lời giải:

ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)

\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)

\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)

Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.

Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)

Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)

Vậy........

 

Bình luận (0)
H24
Xem chi tiết
NP
12 tháng 5 2017 lúc 16:10

Đặt a = \(\sqrt{12-x}\), b = \(\sqrt[3]{24+x}\), ta có:

a + b = 6 => a = 6 - b , (a+b)2 = 36 (1)

Có a2 + b3 = 12 - x + 24 + x = 36 (2)

(1), (2) suy ra (a+b)2 = a2 + b3

<=> a2 + 2ab + b2 = a2 + b3

<=> 2ab + b2 = b3

<=> b3 - b2 - 2ab = 0

<=> b(b2 - b - 2a)=0

Thay a = 6 - b , pt trở thành:

b(b2 - b - 2*6 + 2b) = 0

<=> b(b2 + b - 12) = 0

<=> b(b2 + 4b - 3b -12) = 0

<=> b(b - 3)(b + 4) = 0

<=> b = 0 => x = -24

       b = 3 => x = 3

       b = -4 => x = -88

Vậy S = {-88;-24;3}

Bình luận (0)
H24
12 tháng 5 2017 lúc 16:14

ĐK: \(12-x\ge0\Rightarrow x\le12\)

đặt

\(\hept{\begin{cases}u=\sqrt{12-x}\\v=\sqrt[3]{24+x}\end{cases}}=>\hept{\begin{cases}u^2=12-x\\v^3=24+x\end{cases}}=>\hept{\begin{cases}u^2+v^3=36\left(1\right)\\u+v=6\left(2\right)\end{cases}}\)

từ (2) ta có: \(u=6-v\) thay vào (1) được: \(\left(6-v\right)^2+v^3=36\Leftrightarrow v^3+v^2-12v=0\)

\(\Leftrightarrow v\left(v^2+v-12\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}v=0\\v^2+v-12=0\end{cases}}\Leftrightarrow v=0;v=3;v=-4\)

với \(v=0\Rightarrow u=6\Rightarrow12-x=36\Rightarrow x=-24\)(TM)

với \(v=3\Rightarrow u=3\Rightarrow x=3\left(TM\right)\)

với \(v=-4\Rightarrow u=10\Rightarrow x=-88\left(TM\right)\)

vậy tập nghiệm của PT là S={-24,3,-88}

Bình luận (0)
MH
Xem chi tiết
HN
14 tháng 4 2017 lúc 9:09

Đề bị lỗi không biết cái đề ghi gì trong đó nữa

Bình luận (0)
H24
14 tháng 4 2017 lúc 20:07

câu 1:

từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)

\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)

hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )

câu 2:

chịu

câu 3:

đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )

dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)

Bình luận (0)