giải các phương trình sau :
a)\(x^4+\sqrt{x^2+2010}=\)\(2010\)
b) \(\left(y+2\right)x^2+1=y^2\)(x;y nguyên)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải phương trình
a. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b.\(\sqrt{x-2010}+\sqrt{y-2011}+\sqrt{x+2012}=\frac{1}{2}\left(x+y+z\right)-300\)
giải phương trình:\(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
Ta có pt <=> \(2\sqrt{x-2}+2\sqrt{y+2009}+2\sqrt{z-2010}=x+y+z\)
<=> \(x-2-2\sqrt{x-2}+1+y+2009-2\sqrt{y+2009}+1+z-2010-2\sqrt{z-2010}+1=0\)
<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)
...
^_^
-kindle (sử dụng ở ứng dụng Android
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
Giải các phương trình sau:
a) \(x^3-6x^2-9x+14=0\)
b) \(\frac{\left(2010-x\right)^2-\left(2010-x\right)\left(x-2011\right)+\left(x-2011\right)^2}{\left(2010-x\right)^2+\left(2010+x\right)\left(x-2011\right)+\left(x-2011\right)^2}\)
a) \(x^3-6x^2-9x+14=0\)
\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)
\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)
\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)
Câu 1 . Cho \(a,b\ge3.\) Chứng minh rằng
\(A=21\left(a+\dfrac{1}{b}\right)+3\left(b+\dfrac{1}{a}\right)\ge80\)
Câu 2. Giải phương trình :
\(x^2+6x-1=2\sqrt{5x^3-3x^2+3x-2}\)
Câu 3. Tìm GTNN của
\(Q=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Câu 4 . Giải phương trình
\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)
Câu 1:
\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)
\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)
Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)
\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)
Và do $a,b\geq 3$ nên:
\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)
\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)
Cộng tất cả những BĐT trên ta có:
\(A\geq 2+14+62+2=80\) (đpcm)
Dấu "=" xảy ra khi $a=b=3$
Câu 2:
Bình phương 2 vế ta thu được:
\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)
\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)
\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)
\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)
Do đó pt đã cho vô nghiệm.
giải phương trình: \(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)
PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)
Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:
\(2.\sqrt{x-2}\le x-2+1=x-1\)
\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)
\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)
=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)
Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1
=> x = 3; y = -2008; z = 2011 là nghiệm của PT
Điều kiện \(x\ge2\) vs \(y\ge-2009\) vs \(z\ge2010\) Khi đó
PT \(\Leftrightarrow\) \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)
nên => x=3 ; y=-2008 vs z=2011
Cho 3 số dương x,y,z thỏa mãn điều kiện xy+yz+xz=2010.CMR: giá trị của biểu thứ sau k phụ tuộc vào biến x;y;z
P=\(x\sqrt{\frac{\left(2010+y^2\right)\left(2010+z^2\right)}{2010+x^2}}\)+ \(y\sqrt{\frac{\left(2010+z^2\right)\left(2010+x^2\right)}{2010+y^2}}\)+\(z\sqrt{\frac{\left(2010+x^2\right)\left(2010+y^2\right)}{2010+z^2}}\)
gt pt nó thành nhân tử thay vào P tính
mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé
1. Cho \(\left(x+\sqrt{x^3+1}\right)\left(y+\sqrt{y^3+1}\right)=1.\)
Tính giá trị của biểu thức: \(A=x^{2009}+y^{2009}\)
2. Cho a,b,c là các cạnh của tam giác. CMR: \(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\le a^3+b^3+c^3+3abc\)
3. Giải phương trình sau: \(\sqrt{2\sqrt{3}-3}=\sqrt{x\sqrt{3}-\sqrt{y\sqrt{3}}}\)với \(x;y\in R\)
4. Trên đường thẳng \(y=x+1\)những điể có tọa độ thỏa mãn đẳng thức \(y^2-3y\sqrt{x}+2x=0\)
5.Cho 2 số dương x;y thỏa mãn \(x+y=\frac{2011}{2012}\). Tính MIN của \(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{2010}{1005}\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
giải phương trình nghiệm nguyên
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}+3012=\frac{1}{2}\left(x+y+z\right)\)
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)