Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PA
Xem chi tiết
HN
6 tháng 9 2016 lúc 18:39

Đề bạn sai câu b/

Bình luận (1)
JC
Xem chi tiết
VC
11 tháng 6 2018 lúc 21:19

Ta có pt <=> \(2\sqrt{x-2}+2\sqrt{y+2009}+2\sqrt{z-2010}=x+y+z\)

<=> \(x-2-2\sqrt{x-2}+1+y+2009-2\sqrt{y+2009}+1+z-2010-2\sqrt{z-2010}+1=0\)

<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

...

^_^

Bình luận (0)
CD
11 tháng 7 2018 lúc 10:20

nát cả óc!

Bình luận (0)
NG
11 tháng 7 2018 lúc 10:31

-kindle (sử dụng ở ứng dụng Android

Bình luận (0)
LT
Xem chi tiết
NT
3 tháng 12 2021 lúc 14:41

e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

Bình luận (0)
NM
3 tháng 12 2021 lúc 14:47

\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)

Vậy hàm số lẻ

\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)

Vậy hàm số chẵn

\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)

Vậy hàm số lẻ

\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)

Vậy hàm số lẻ

Bình luận (0)
TP
Xem chi tiết
KN
12 tháng 1 2020 lúc 16:54

a) \(x^3-6x^2-9x+14=0\)

\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)

\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)

\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
AH
17 tháng 1 2019 lúc 17:07

Câu 1:

\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)

\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)

Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)

\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)

Và do $a,b\geq 3$ nên:

\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)

\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)

Cộng tất cả những BĐT trên ta có:

\(A\geq 2+14+62+2=80\) (đpcm)

Dấu "=" xảy ra khi $a=b=3$

Bình luận (0)
AH
17 tháng 1 2019 lúc 17:31

Câu 2:

Bình phương 2 vế ta thu được:

\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)

\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)

\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)

\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)

Do đó pt đã cho vô nghiệm.

Bình luận (0)
NC
Xem chi tiết
TL
9 tháng 6 2015 lúc 14:08

Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)

PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)

Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:

\(2.\sqrt{x-2}\le x-2+1=x-1\)

\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)

\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)

=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)

Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1

=> x = 3; y = -2008; z = 2011 là nghiệm của PT

Bình luận (0)
LH
26 tháng 3 2016 lúc 10:12

Điều kiện \(x\ge2\) vs \(y\ge-2009\) vs \(z\ge2010\)  Khi đó

PT \(\Leftrightarrow\) \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

nên => x=3 ; y=-2008 vs z=2011

Bình luận (0)
TM
Xem chi tiết
LF
10 tháng 11 2016 lúc 22:36

gt pt nó thành nhân tử thay vào P tính

Bình luận (0)
LF
10 tháng 11 2016 lúc 22:39

mk nhớ lm bài tương tự thế này r` bn chịu khó mở ra xem lại ở đây olm.vn/?g=page.display.showtrack&id=424601&limit=260, ấn vào chữ Trang tiếp theo để tìm thêm nhé

Bình luận (0)
LF
10 tháng 11 2016 lúc 22:40

thôi mk lm luôn bn chờ tí

Bình luận (1)
VC
Xem chi tiết
ZZ
30 tháng 8 2019 lúc 19:09

E hổng biết cách này có đúng ko nữa:((

5

Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)

\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )

Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)

Bình luận (0)
NH
Xem chi tiết
H24
4 tháng 12 2016 lúc 16:25

\(x-2008=X;y-2009=Y;z-2010=Z\)

\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)

\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)

\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)

\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)

\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

Bình luận (0)