tìm nghiệm nguyên : (x+y+1)^2=3(x^2+y^2+1)
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
tìm nghiệm nguyên
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\) = 1
Tìm nghiệm nguyên dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}=3\)
Câu 2/
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)
Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)
Xét \(x^2,y^2,z^2\ge1\)
Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)
\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)
\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)
Dấu = xảy ra khi \(x^2=y^2=z^2=1\)
\(\Rightarrow\left(x,y,z\right)=?\)
Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có
\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)
\(\Leftrightarrow x^4=3\left(l\right)\)
Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)
Bài 2/
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)
Vậy phương trình không có nghiệm nguyên dương.
Em mới học lớp 5 thôi nên em không biết cái gì
~~~ Chúc chị học giỏi ~~~
Tìm nghiệm nguyên của phương trình: (x+y+1)^2=3(x^2+y^2+1)
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
tìm nghiệm nguyên (x^2)y+4y=x+6
giải hệ phương trình {(2x+1)(y+2) = 9 và (2y+1)(x+3)=12
Bài 1:
$x^2y+4y=x+6$
$\Leftrightarrow y(x^2+4)=x+6$
$\Leftrightarrow y=\frac{x+6}{x^2+4}$
Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên
$\Rightarrow x+6\vdots x^2+4(1)$
$\Rightarrow x^2+6x\vdots x^2+4$
$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$
$\RIghtarrow 6x-4\vdots x^2+4(2)$
Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$
$\Rightarrow 40\vdots x^2+4$
$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)
$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$
Đến đây thay vào tìm $y$ thôi.
Bài 2:
Lấy PT(1) trừ PT (2) theo vế thu được:
$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$
Thay vào PT(1) thì:
$(2.\frac{5y-2}{3}+1)(y+2)=9$
$\Leftrightarrow 10y^2+19y-29=0$
$\Leftrightarrow (y-1)(10y+29)=0$
$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$
Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$
Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$
Tìm nghiệm nguyên dương
x2=y(y+1)(y+2)(y+3)
Tìm nghiệm dươngx2-2y2+xy-x+4y-12=0
1)Tìm nghiệm nguyên của phương trình:
y3-x3=91
2)Tìm nghiệm nguyên của phương trình:
x2=y2+y+13
3)Tìm nghiệm nguyên của phương trình:
x2+x+1991=y2
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.