Rut gon bieu thuc sau:
\(\frac{x^3y-xy^3+y^3z-yz^3+z^3x-x^3z}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
cho bieu thuc M=\(\frac{xy-3x-y+4}{xy-2x-2y+4}\)+\(\frac{yz-3y-z+4}{yz-2y-2z+4}\)+\(\frac{zx-3z-x+4}{zx-2z-2x+4}\)
chung minh GT cua bieu thuc M luon la 1 so nguyen voi x khac 2 va y khac 2
rút gọn: \(C=\frac{x^3y-xy^3+y^3z-yz^3+z^3x-zx^3}{x^2y-xy^2+y^2z-yz^2+z^2x-zx^2}\)
cho a=x^3y-xy^3+y^3z-yz^3+z^3x/x^2y-xy^2+y^2z-yz^2+z^2x-zx^2 a) với giá trị nào của x,y,z thì A có nghĩa b) tính giá trị của A khi x=-1/2, y=5/2,z=8
a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.
Cho \(x,y,z>0\)và \(xy+yz+zx=xyz.Cm\)\(\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{3x+y+2z}< \frac{3}{16}\)
Từ: \(xy+yz+xz=xyz\) <=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(A=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{2x+y+2z}\)
Áp dụng bđt: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) (tự cm đúng)
Ta có: \(\frac{1}{x+2y+3z}=\frac{1}{x+z+2y+2z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{2y+2z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{2y}+\frac{3}{2z}\right)\) (1)
CMTT: \(\frac{1}{2x+3y+z}\le\frac{1}{16}\left(\frac{1}{2x}+\frac{1}{z}+\frac{3}{2y}\right)\) (2)
\(\frac{1}{3x+y+2z}\le\frac{1}{16}\left(\frac{3}{2x}+\frac{1}{y}+\frac{1}{2z}\right)\)(3)
Từ (1); (2) và (3) cộng vế theo vế
\(A\le\frac{1}{16}\left(\frac{3}{2z}+\frac{1}{x}+\frac{1}{2y}+\frac{3}{2y}+\frac{1}{z}+\frac{1}{2x}+\frac{3}{2z}+\frac{1}{y}+\frac{1}{2z}\right)\)
\(A\le\frac{3}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{16}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y+2z\\z=2x+y\\y=x+2z\end{cases}}\) <=> x = y = z = 0
mà x;y;z > 0 => Dấu "=" ko xảy ra
=> A < 3/16
Rút gọn: A= \(\frac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2}\)
B=\(\frac{x^3y-xy^3+y^3z-yz^3+z^3x-xz^3}{x^2y-xy^2+y^2z-z^2y+z^2x-zx^2}\)
Cho \(M=\frac{xy-3x-y+4}{xy-2x-2y+4}+\frac{yz-3y-z+4}{yz-27-2z+4}+\frac{zx-3z-x+4}{zx-2z-2x+4}\).
Chứng minh giá trị của biểu thức luôn là một số nguyên với \(x\ne2\)và \(y\ne2\)
Xét từng mẫu của phân thức trên ta thu được :
\(xy-2x-2y+4=x\left(y-2\right)-2\left(y-2\right)=\left(x-2\right)\left(y-2\right)\)
\(yz-27-2z+4=yz-27-2z+4\)
\(zx-2z-2x+4=z\left(x-2\right)-2\left(x-2\right)=\left(z-2\right)\left(x-2\right)\)
Vậy ta có điều kiện sau : \(x\ne2;y\ne2;z\ne2\)( đpcm )
cho ác số dương x ,y ,z thả mãn x+y+z=3.Tìm GTLN của
B=\(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{yz}{yz+3x}}\)+\(\sqrt{\dfrac{zx}{zx+3y}}\)
Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3 ta có:
\(B=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\dfrac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\dfrac{zx}{zx+y\left(x+y+z\right)}}\)
\(B=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\dfrac{yz}{\left(y+x\right)\left(z+x\right)}}+\sqrt{\dfrac{zx}{\left(z+y\right)\left(z+x\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}+\dfrac{x}{z+x}\right)\)
\(B\le\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Vậy...
Cho biểu thức M = \(\dfrac{xy-3x-y+4}{xy-2x-2y+4}\)+\(\dfrac{yz-3y-z+4}{yz-2y-2z+4}\)+\(\dfrac{zx-3z-x+4}{zx-2z-2x+4}\)
Chứng minh giá trị biểu thức M luôn là 1 số nguyên với x khác 2 và y khác 2.
cho cac so x,y,z va x+y+z khac 0 thoa man dieu kien
\(\frac{x+2y}{x+2y-z}+\frac{y+2z}{y+2z-x}+\frac{z+2x}{z+2x-+y}\)
tinh gt bieu thuc \(T=\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{z^2+x^2}{zx}\)