Cho tam giác ABC vuông tại A có BC=10cm và đường cao AH = 5cm gọi I; K lần lượt là hình chiếu của H lên AB và AC. Tính diện tích hình AIHK
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC vuông tại A, đường cao AH, biết CH= 5cm, AH= 10cm. Độ dài cạnh BC?
Xét ΔABC vuông tại A có AH ⊥ BC.
⇒ AH² = CH . BH (Hệ thức lượng trong tam giác vuông)
⇒ BH = AH² : CH
⇒ BH = 10² : 5
⇒ BH = 100 : 5
⇒ BH = 20 (cm)
Ta có: BC = BH + CH = 20 +5 = 25 (cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow BH=10^2:5=20\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=20+5=25(cm)
Cho tam giác ABC vuông tại A có BC=10cm, AH =4cm ( AH là đường cao ). Gọi I,K là chân đường vuông góc kẻ từ H xuống các cạnh AB,AC. Tính chu vi và diện tích tứ giác AIHK
Lời giải:
Ta có:
$AB.AC=AH.BC=40$
$AB^2+AC^2=BC^2=100$
$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$
$\Rightarrow AB+AC=6\sqrt{5}$
Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$
$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$
$\Rightarrow IK=AH=4$
Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$
Mặt khác, theo hệ thức lượng trong tam giác vuông:
$AI.AB=AH^2$
$AK.AC=AH^2$
$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$
Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)
Chu vi AIHK:
$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)
Diện tích AIHK:
$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)
Bài 1
Cho tam giác ABC vuông tại A có đường cao AH cho AB=5cm,BH=3cm
a)Tính BC,AH
b) Kẻ HE vuông góc vs AC .Tính HE
Bài 2
Cho tam giác ABC vuông tại A đường cao AH phân giác AD biết BD=10cm,DC=20cm.Tính AH,HD
Baif3
a) cho tam giác ABC vuông tại A có AB=5cm đg cao AH=4cm. Tính chu vi tam giác ABC
b) cho tam giác ABC vuông tại A đg cao AH phân giác AD.biết BD =15cm DC=20cm Tính AH,AD
Giải nhanh giúp mk nha mk c.ơn
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
1) Cho tam giác ABC cân tại A có AH là đường cao
a) Biết AB=8cm, BC=4cm. Tính diện tích tam giác ABC
b) Gọi N là trung điểm của AC. Tứ giác ANHB là hình gì?
2) Cho tam giác ABC cân tại A
a) Biết AB=10cm, BC=5cm. Đường trung tuyến AH. Tính diện tích tam giác ABC
b) Gọi M, N lần lượt là trung điểm của AB,AC. Tứ giác BMNC là hình gì?
Mn giúp mik vs bài này mik cần gấp!
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
cho tam giác ABC vuông tại A có BC=10cm ,đường cao AH=4 cm .Gọi I,K lần lượt là hình chiếu của H trên AB,AC .diện tích tam giác AIK
EM CHUA HOC MOI HOC LOP 7 XIN LOI CHI TIC CHO EM CAI VOI
AI = \(\frac{8\sqrt{5}}{5}\)
AK = \(\frac{4\sqrt{5}}{5}\)
SAIK = \(\frac{8\sqrt{5}}{5}\) *\(\frac{4\sqrt{5}}{5}\) / 2 = 3,2 cm2
Bài 1. Giải tam giác vuông ABC, biết: BC = 10cm, góc C = 55 độ.
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm, AC = 12cm.
a) Tính AH.
b) Gọi M, N là hình chiếu của H trên AB, AC. Chứng minh rằng: MN2 = AM.AB.
c) Gọi K là điểm đối xứng của H qua AC. Tính diện tích tứ giác AHCK.
Bài 1 không biết tam giác vuông tại đâu nhỉ?
Bài 1:
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{B}=35^0\)
Xét ΔABC vuông tại A có \(AB=BC\cdot\sin\widehat{C}\)
\(\Leftrightarrow AB=10\cdot\sin55^0\)
hay \(AB\simeq8,19\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=32,9239\)
hay \(AC\simeq5,74\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm BC. Biết AM = 10cm và AH = 8cm. a) Tính MH; AB; AC. b) Vẽ đường thẳng qua B và vuông góc với AM, cắt AC tại K. Tính BK, AK.
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}\)
hay BC=20(cm)
Theo đề, ta có: \(HB\left(20-HB\right)=64\)
\(\Leftrightarrow HB^2-20HB+64=0\)
\(\Leftrightarrow HB=4\left(cm\right)\)
\(\Leftrightarrow HC=16\left(cm\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=4\sqrt{5}\left(cm\right)\\AC=8\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K là chân các đường vuông góc kẻ từ H xuống AB, AC. Tính diện tích tứ giác AIHK biết BC= 10cm, AH = 4cm.