tìm các hệ số a,b,c,biết: ( ax + b) * (a^2 - x - 1) = ax^3 - cx^2 - 1
Đề: Xác định các hệ số a,b,c biết:
b)(ax+b).(x2-x-1)=ax3+cx2-1
bài 1 xác định các hệ số a, b, c biết
( ax + b ) ( x2 - x - 1 ) = ax3 + cx2 - 1
ta có: ax^3+cx^2-1=(ax+ a+c)(x^2-x-1) + (2a+c)x +a+c-1
=> để (ax+b)(x^2-x-1)=ax^3+cx^2 -1 thì
ax+b=ax+a+c (1)
và (2a+c)x +a+c -1 =0 (2)
(1)=> a+c=b
(2) => để (2a+c)x+a+c-1=0 với mọi x thì 2a+c =0 =>a+b =0
đồng thời a+c-1 =0 => b-1=0=> b=1
nên a= -1; c=2
tìm các hệ số a, b, c biết rằng
(ax+b )* (x^2-x-1) = ax^3+cx^2-1
Bài 1: Xác định các hệ số a, b, c biết:
a) ( 2x - 5 ) . ( 3x + b ) = ax2 + x + c
b) ( ax + b ) . ( x2 - x - 1) = ax3 + cx2 - 1
Tìm các hệ số a, b, c biết rằng: (x^2 + cx + 2)(ax + b) = x^3 + x^2 - 2 với mọi x.
Xác định hệ số a,b,c biết rằng
a. (2x - 5)(3x + b)= ax2 + x + c
b. (ax +b)( x2 - x -1) = ax3 + cx2 -1
Xác định hệ số a, b, c, biết rằng với mọi x:
a) (2x - 5)(3x + b) = ax2 + x + c
b) (5x - 3)(2x - c) = ax2 + bx + 21
c) (ax + b)(x2 - x - 1) = ax3 +cx2 - 1
(2x-5)(3x+b)=ax2+x+c
<=> 6x2+2bx-15x-5b=ax2+x+c
Đồng nhất hệ số ta được
\(\left\{{}\begin{matrix}a=6\\2b-15=1\\-5b=c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\-40\end{matrix}\right.\)
Các câu sau giải tương tự
Xác định các hệ số a, b, c biết rằng : ( ax + b )( x2 - x - 1 ) = ax3 + cx2 - 1 với mọi x
\(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
⇔ \(ax^3+x^2\left(b-a\right)-x\left(a+b\right)-b=ax^3+cx^2-1\)
Đồng nhất hệ số , ta được :
+) \(b=1\)
+) \(a+b=0\text{⇔}a+1=0\text{⇔}a=-1\)
+) \(b-a=c\text{⇔}1-\left(-1\right)=c\text{⇔}c=2\)
KL................
Xác định hệ số a,b,c biết:
a) (2x-5).(3x+b) = ax2 + x + c
b) (ax+b).(x2-x-1)=ax3 + cx2 - 1
c) (5x-3).(2x-c)=ax2 + bx + 21
d) (ax+4).(x2 + bx - 1) = 9x3 + 58x2 + 15x + c
Phá tung cái ngoặc ra thôi mà nhỉ?
a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)
Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c