E=1-x√y với x lớn hơn hoặc bằng 0
X - 3 căn x + 2 với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
X+5 căn x + 6với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
\(X\sqrt{x}+y\sqrt{y}\)
với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
1. với x, y lớn hơn 0. cm: x/y + y/z lớn hơn hoặc bằng 2
2. với x, y lớn hơn 0. cm: (x+y+z)(1/x + 1/y + 1/z) lớn hơn hoặc bằng 9
3.tính
A= 1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x^8
B=1/x(x+1) + 1/(x+1)(x+2) + ....... + 1/(x+19)(x+20)
cho các số thực x,y thỏa mãn điều kiện x lớn hơn hoặc bằng 0,y lớn hơn hoặc bằng 0 , x+y=1
CMR x/y+1 +y/x+1 lớn hơn 2/3
a,(5x-1)(y+1)=4
b,xy-7y+5x=0(với x lớn hơn hoặc bằng 3)
c,xy-x-3y=8
d,(2x-1)(4y+2)=-30
e,(x-7)(xy+1)=7
giúp mình với!!!
** Bổ sung điều kiện $x,y$ là số nguyên.
a/
$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:
TH1: $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại)
TH2: $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$
TH3: $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại)
TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)
TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$
TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)
Vậy......
b/
$xy-7y+5x=0$
$y(x-7)+5(x-7)=-35$
$(x-7)(y+5)=-35$
Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.
Mà $x\geq 3\Rightarrow x-7\geq -4$
$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$
Nếu $x-7=-1\Rightarrow y+5=35$
$\Rightarrow x=6; y=30$
Nếu $x-7=1\Rightarrow y+5=-35$
$\Rightarrow x=8; y=-40$
Nếu $x-7=5\Rightarrow y+5=-7$
$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$
$\Rightarrow x=14; y=-10$
Nếu $x-7=35; y+5=-1$
$\Rightarrow x=42; y=-6$
c/
$xy-x-3y=8$
$\Rightarrow (xy-x)-3y=8$
$\Rightarrow x(y-1)-3(y-1)=11$
$\Rightarrow (y-1)(x-3)=11$
Do $x,y$ nguyên nên $x-3, y-1$ cũng là số nguyên. Mà $(x-3)(y-1)=11$ nên ta có các TH sau:
TH1: $x-3=1, y-1=11\Rightarrow x=4; y=12$
TH2: $x-3=-1, y-1=-11\Rightarrow x=2; y=-10$
TH3: $x-3=11, y-1=1\Rightarrow x=14; y=2$
TH4: $x-3=-11, y-1=-1\Rightarrow x=-8; y=0$
cmr: 1/x+1/y lớn hơn hoặc bằng 4/x+y với x>0, y>0
cmr 2 căn bậc hai của x phần x+1 lớn hơn hoặc bằng 0 với x lớn hơn hoặc bằng 0
1.Cho C = 3-x/2 .Tìm x để :
a; C lớn hơn hoặc bằng 0 b; C bé hơn hoặc bằng 0 c; C= 2/3
2.Cho D= 5+x/-5 .Tìm x để:
a; D lớn hơn hoặc bằng 0 b; D bé hơn hoặc bằng 0 c; D= 3/7
3.Cho E= x+1/x-1 .Tìm x để:
a; E lớn hơn hoặc bằng 0 b; E= 3/4
4.Cho F= x-2/x+3 .Tìm x để:
a; F bé hơn hoặc bằng 0 b; F= -1/2