Những câu hỏi liên quan
HT
Xem chi tiết
TC
8 tháng 8 2021 lúc 21:17

undefined

Bình luận (1)
LN
Xem chi tiết
NL
8 tháng 12 2021 lúc 19:19

\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)

\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)

\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)

\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)

\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)

\(\Rightarrow A\ge2\)

\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

Bình luận (0)
TL
Xem chi tiết
TB
Xem chi tiết
NL
Xem chi tiết
H24
4 tháng 8 2021 lúc 9:32

\(2\left(x+y\right)+xy=x^2+y^2\\ \Leftrightarrow x^2+y^2-2x-2y-xy=0\\ \Leftrightarrow2x^2+2y^2-4x-4y-2xy=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+\left(x^2-2xy+y^2\right)=8\\ \Leftrightarrow\left(x-2\right)^2+\left(y-2\right)^2+\left(x-y\right)^2=8\)

\(\Leftrightarrow\begin{matrix}\left(x-2\right)^2=0;&\left(y-2\right)^2=4;&\left(x-y\right)^2=4\\\left(x-2\right)^2=4;&\left(y-2\right)^2=0;&\left(x-y\right)^2=4\\\left(x-2\right)^2=4;&\left(y-2\right)^2=4;&\left(x-y\right)^2=0\end{matrix}\)

\(\Leftrightarrow\begin{matrix}x=2;&y=4\\x=2;&y=0\\x=4;&y=2\\x=0;&y=2\\x=0;&y=0\\x=2;&y=2\end{matrix}\)

Vậy có 6 cặp số thỏa mãn:

\(\left(x;y\right)\in\left\{\left(2;4\right);\left(2;0\right);\left(4;2\right);\left(0;2\right);\left(0;0\right);\left(2;2\right)\right\}\)

 

Bình luận (0)
PL
Xem chi tiết
DL
16 tháng 3 2017 lúc 20:21

chưa học nên ko biết

Bình luận (0)
HD
27 tháng 11 2024 lúc 22:43

Ngáo đá

Bình luận (0)
PA
Xem chi tiết
TG
22 tháng 12 2021 lúc 21:05

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)

Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)

Bình luận (0)
NT
22 tháng 12 2021 lúc 21:05

\(P_{max}=1019090\)

Bình luận (0)
DH
Xem chi tiết
TT
Xem chi tiết
TN
27 tháng 5 2018 lúc 22:07

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

Bình luận (0)
VD
Xem chi tiết