cho P=x2-3x.\(chop=x^2-3x.\sqrt{y}+2ybietx=\frac{1}{2-\sqrt{y}}vay=\frac{1}{7+4\sqrt{3}}\)
1.Giải hệ phương trình:
a.\(\left\{{}\begin{matrix}2\sqrt{2}x+y=2\sqrt{2}\\7x-3y=7\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}7x+y=-\frac{1}{7}\\-\frac{4}{3}x-2y=1\frac{1}{3}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2\sqrt{5}x+3y=\sqrt{2}\\\sqrt{5}x-y=3\sqrt{2}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y}=-5\\\frac{3}{x}-\frac{4}{y}=1\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}-\frac{5}{3x+1}+\frac{7}{2x+1}=\frac{5}{7}\\\frac{1}{3x+1}-\frac{1}{2y-3}=\frac{2}{7}\\\end{matrix}\right.\)
g.\(\left\{{}\begin{matrix}2x^2+5y^2=129\\-3x^2+y^2=13\end{matrix}\right.\)
Tìm tập xác định của các hàm số sau:
a) y = \(\frac{\sqrt{x+1}}{x^2-x-6}\)
b) y = \(\sqrt{6-3x}\) - \(\sqrt{x-1}\)
c) y = \(\frac{\sqrt{2-x}+\sqrt{x+2}}{x}\)
d) y = \(\frac{\sqrt{3x-2}+6x}{\sqrt{4-3x}}\)
e) y = \(\sqrt{6-x}\) + \(\frac{2x+1}{1+\sqrt{x-1}}\)
f) y = \(\frac{2x+9}{\left(x+4\right)\sqrt{x+3}}\)
g) y = \(\frac{\sqrt{x^2-2x+3}}{x-3\sqrt{x}+2}\)
h) f(x) = \(\frac{1}{\sqrt{1-\sqrt{1+4x}}}\)
i) y = \(\frac{2x^2}{\sqrt{x^2-3x+2}}\)
xác định hàm số
a, \(y=\sqrt{x^2+x-4}\)
b , \(y=\frac{1}{x^2+1}\)
c, y= l 2x - 3 l
d , \(y=\frac{1}{x^2-3x}\)
e , \(y=\sqrt{1-x}+\frac{1}{x\sqrt{1}+x}\)
f , \(y=\frac{2x-1}{\sqrt{x\sqrt{\left(x-4\right)}}}\)
g , \(y=\sqrt{3+x}+\frac{1}{x^2-1}\)
h , \(y=\frac{1}{\sqrt{2x^2-4x+4}}\)
i, \(y=\sqrt{6-x}+2x\sqrt{2x+1}\)
j, \(y=\frac{x^2+1}{\sqrt{2-5}}+x\sqrt{1+x}\)
k, \(y=\frac{1}{x^2+3x+3}+\left(x+2\right)\sqrt{x+3}\)
l, \(y=\sqrt[3]{\frac{3x+5}{x^2-1}}\)
Giải phương trình
1)\(3x+4y=5\sqrt{x^2+y^2}\)
2)\(-x^2+y^2+2x+4y+7=2\sqrt{\left(x^2+2x+1\right)\left(y^2+4y+4\right)}\)
3)\(\sqrt{3-x}+\sqrt{x-1}=2+\left(x-y\right)^2\)
4)\(\sqrt{3x^3-5x^2+5x-2}-\frac{x^2}{2}-x=-\frac{1}{2}\)
\(x+y=4\Rightarrow\frac{x+y}{2}=2\Rightarrow\sqrt{\frac{x+y}{2}}=\sqrt{2}\)
\(P.\sqrt{\frac{x+y}{2}}=\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P\ge x+\frac{1}{x}+y+\frac{1}{y}\)
\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge4-3x\)
\(y+\frac{1}{y}=\left(\frac{1}{y}+4y\right)-3y\ge4-3y\)
\(\Rightarrow\sqrt{2}P\ge8-3\left(x+y\right)=8-3.4=-4\)
đến đay sau răng
giải pt
a) \(\sqrt{x+3}=3-\sqrt{6-x}\)
b) \(\sqrt{3x-2}-\sqrt{x-7}=1\)
c) \(\frac{1-\sqrt{3x+1}}{\sqrt{x-1}-7}=1\)
d) \(\frac{x}{\sqrt{7x-4}-3}=\frac{x}{\sqrt{x+1}}\)
e) \(\sqrt{3x-2}-\sqrt{x-7}=1\)
f) \(2\sqrt{\frac{3x+1}{2x-1}}-\sqrt{\frac{x-1}{2x-1}}=2\)
a)\(ĐK:-3\le x\le6\)
\(PT\Leftrightarrow\sqrt{x+3}+\sqrt{6-x}=3\)
\(\Leftrightarrow x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\left(tm\right)\)
b/ ĐKXĐ: \(x\ge7\)
\(\sqrt{3x-2}=1+\sqrt{x-7}\)
\(\Leftrightarrow3x-2=x-6+2\sqrt{x-7}\)
\(\Leftrightarrow x+2=\sqrt{x-7}\)
\(\Leftrightarrow x^2+4x+4=x-7\)
\(\Leftrightarrow x^2+3x+11=0\) (vô nghiệm)
c/ ĐKXĐ: \(x\ge1;x\ne50\)
\(1-\sqrt{3x+1}=\sqrt{x-1}-7\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{3x+1}=8\)
\(\Leftrightarrow4x+2\sqrt{3x^2-2x-1}=64\)
\(\Leftrightarrow\sqrt{3x^2-2x-1}=32-2x\) (\(x\le16\))
\(\Leftrightarrow3x^2-2x-1=\left(32-2x\right)^2\)
d/ ĐKXĐ: \(x\ge\frac{4}{7};x\ne\frac{13}{7}\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt{7x-4}-3\)
\(\Leftrightarrow\sqrt{x+1}+3=\sqrt{7x-4}\)
\(\Leftrightarrow x+10+6\sqrt{x+1}=7x-4\)
\(\Leftrightarrow3\sqrt{x+1}=3x-7\) (\(x\ge\frac{7}{3}\))
\(\Leftrightarrow9\left(x+1\right)=\left(3x-7\right)^2\)
\(\Leftrightarrow...\)
e/ Giống câu b
f/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{1}{3}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{\frac{3x+1}{2x-1}}=a\ge0\\\sqrt{\frac{x-1}{2x-1}}=b\ge0\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}2a-b=2\\a^2+5b^2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2a-2\\a^2+5b^2=4\end{matrix}\right.\)
\(\Rightarrow a^2+5\left(2a-2\right)^2=4\)
\(\Leftrightarrow a^2+20\left(a^2-2a+1\right)-4=0\)
\(\Leftrightarrow21a^2-40a+16=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{4}{3}\\a=\frac{4}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{\frac{3x+1}{2x-1}}=\frac{4}{3}\\\sqrt{\frac{3x+1}{2x-1}}=\frac{4}{7}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{3x+1}{2x-1}=\frac{16}{9}\\\frac{3x+1}{2x-1}=\frac{16}{49}\end{matrix}\right.\) \(\Leftrightarrow...\)
giải các phương trình vô tỉ sau
\(\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}=2\)
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
giúp mình với nhé
Câu 1: Cho A= \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh A<B
Câu 2: Tính A=\(\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}+\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}\)Với x=\(\sqrt[3]{2017}\)
Câu 3: Cho hai số thực x và y thoã mãn \(\left(\sqrt{X^2+1}+X\right)\left(\sqrt{Y^2+1}+Y\right)=1\)Tính x+y
Câu 4: Trục căn thức mẫu số A= \(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
Câu 5 : Gọi a là nghiệm nguyên dương của Phương trình \(\sqrt{2}X^2+X-1=0\)Không giải pt tính
C=\(\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)