Tìm số tự nhiên n sao cho: \(\dfrac{n}{n+1}+\dfrac{2}{n+1}\) là số tự nhiên
giúp mik với ạ
tìm các giá trị của n để phân số M=\(\dfrac{2n-3}{2n-1}\) (n ϵ N ) là một số tự nhiên
giúp em với ạ, em cần gấp!
1.Tìm các số tự nhiên a,b khác 0 sao cho :
\(\dfrac{a}{5}-\dfrac{z}{b}=\dfrac{2}{15}\).
2.Tìm số tự nhiên n, để các biểu thức là số tự nhiên.
a)A=\(\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\).
b)B=\(\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+1}{n+2}\).
giúp mình với mai mình nộp rồi
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
Với n thuộc N, giải thích tại sao \(a=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\) không phải là số tự nhiên
Ta có \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};...;\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)
Do đó \(a< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}=1+\left(\dfrac{1}{1}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
\(=1+1-\dfrac{1}{n}=1-\dfrac{1}{n}< 2\) . Suy ra \(1< a< 2\)
Vậy \(a\) khôg phải số tự nhiên
Ta có: `1 < 1 + 1/2^2 + ... + 1/n^2`
`1/(2.2) < 1/(1.2)`
`1/(3.3) < 1/(2.3)`
`...`
`1/(n^2) < 1/(n-1(n))`
`=> 1/2^2 + ... + 1/n^2 < 1/(1.2) + ... + 1/(n-1(n)) = 1/1 - 1/n < 1`.
`=> a < 1 + 1 = 2`.
`=> 1 < a < 2`.
`=>` Đây không là số tự nhiên.
tìm số tự nhiên n nhỏ hơn 30 sao cho \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên
Để \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên thì \(\sqrt{n-1}⋮2\)
=>\(n-1=\left(2k\right)^2=4k^2\)(k\(\in\)Z) và n>=1
=>\(n=4k^2+1\)
n<30
=>\(4k^2+1< 30\)
=>\(4k^2< 29\)
=>\(k^2< \dfrac{29}{4}\)
mà k nguyên
nên \(k^2\in\left\{0;1;4\right\}\)
\(n=4k^2+1\)
=>\(n\in\left\{1;5;17\right\}\)
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
Tìm n \(\inℕ\) để \(\dfrac{n}{n+1}+\dfrac{2}{n+1}\) là số tự nhiên
\(A=\dfrac{n}{n+1}+\dfrac{2}{n+1}=\dfrac{n+2}{n+1}=\dfrac{n+1}{n+1}+\dfrac{2}{n+1}=1+\dfrac{2}{n+1}\)
Để A là số tự nhiên => \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
A | 0 | -1 (loại) | 3 | 2 |
Vậy \(n\in\left\{0;2;3\right\}\)
Chứng minh rằng với số tự nhiên n > 2 thì +\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{n^2}\)
không là số tự nhiên
Cho \(A=1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\) với n là số tự nhiên. Chứng minh rằng \(A< \dfrac{7}{4}\).
a) Cho phân số \(\dfrac{13}{42}\). Hãy tìm một số tự nhiên n sao cho khi cộng tử số với n và giữ nguyên mẫu số thì được phân số mới có giá trị bằng \(\dfrac{5}{6}\).
b) Tính nhanh
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{6}+\dfrac{4}{8}+\dfrac{5}{10}+\dfrac{6}{12}+\dfrac{7}{14}+\dfrac{8}{16}+\dfrac{9}{18}+\dfrac{10}{20}\)
Với mọi số tự nhiên \(n>1\) giải thích tại sao \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)
Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)