Những câu hỏi liên quan
MN
Xem chi tiết
NT
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

Bình luận (0)
PV
Xem chi tiết
NT
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
TL
Xem chi tiết
NT
26 tháng 8 2021 lúc 21:43

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=27^2+36^2=45^2\)

hay BC=45cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=21,6\left(cm\right)\\BH=16,2\left(cm\right)\\CH=28,8\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
BN
Xem chi tiết
NT
12 tháng 4 2022 lúc 18:32

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^BHA = ^BAC = 900

Vậy tam giác HBA ~ tam giác ABC (g.g) 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

b, Xét tam giác CHI và tan giác CAH có 

^AIH = ^CHA = 900

^C _ chung 

Vậy tam giác CHI ~ tam giác CAH (g.g)

\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)

Bình luận (0)
AN
Xem chi tiết
NT
29 tháng 10 2021 lúc 21:44

b: Xét ΔACB vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(1\right)\)

Xét ΔABK vuông tại A có AK là đường cao

nên \(AB^2=BK\cdot BD\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)

Bình luận (0)
NN
Xem chi tiết
NA
1 tháng 8 2020 lúc 11:38

Sử dụng hệ thức lượng trong tam giác vuông thôi: 
AB*AC = AH*BC = 12*25 = 300 
AB^2 + AC^2 = BC^2 = 25^2 = 625 
giải hệ trên ta được : AB = 15, AC = 20 
AB^2 = BH*BC=> BH = AB^2/BC = 9 
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16 
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15 

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
NT
3 tháng 9 2021 lúc 23:02

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

Bình luận (0)
VV
Xem chi tiết
NH
10 tháng 2 2018 lúc 21:27

kho ua

Bình luận (0)
TH
Xem chi tiết
TT
12 tháng 5 2021 lúc 22:31

Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..

Bình luận (0)
BL
13 tháng 4 2022 lúc 20:54

sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AT
16 tháng 7 2021 lúc 11:02

tam giác ABC vuông tại A nên áp dụng Py-ta-go 

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

b) Kẻ HE,HF vuông góc với AB,AC chớ,chứ ko có điểm I

Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow EF=AH\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow EA.EB=EH^2\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow FA.FC=HF^2\Rightarrow EA.EB+FA.FC=EH^2+FH^2=EF^2=AH^2\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\Rightarrow HB.HC=EA.EB+FA.FC\)

 

Bình luận (0)