Nếu x^2+6x+6/x+1/x^2 hãy tìm giá trị nhỏ nhất
tìm giá trị của x để biểu thức có giá trị nhỏ nhất
a) 3x^2 - 6x - 1
b) (x - 1)(x + 2)(x + 3)(x + 6)
b) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Vậy GTNN của bt là -36\(\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a) \(3x^2-6x-1=3\left(x^2-2x-\frac{1}{3}\right)\)
\(=3\left(x^2-2x+1-\frac{4}{3}\right)\)
\(=3\left[\left(x-1\right)^2-\frac{4}{3}\right]=3\left(x-1\right)^2-4\ge-4\)
Vậy GTNN của bt là - 4\(\Leftrightarrow x=1\)
\(P=\frac{x^2-3x+2}{x^2-6x+9}:\left(\frac{x-1}{x-2}-\frac{1}{3-x}+\frac{-x^2+4x-2}{x^2-5x+6}\right)\)
a, Rút gọn P
b, tìm các giá trị của x sao cho P<1
c, khi x<3, hãy tìm giá trị nhỏ nhất của P
Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có thể):
g, \(G = x^2 + 6x + 4y^2 - 10y + 5\)
h,\(H = -2x^2 - 6x - 3y^2 + 12y - 8\)
i, \(I = \dfrac{6}{x^2-6x+30}\)
g) G = x2 + 6x + 4y2 - 10y + 5
G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25
G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25
h) H = -2x2 - 6x - 3y2 + 12y - 8
H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5
H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)
vậy MaxH = 8,5 khi x = -1,5 và y = 2
G = x2 + 6x + 4y2 - 10y + 5
G = ( x2 + 6x + 9 ) + ( 4y2 - 10y + 25/4 ) - 41/4
G = ( x + 3 )2 + ( 2y - 5/2 )2 - 41/4
\(\hept{\begin{cases}\left(x+3\right)^2\ge0\forall x\\\left(2y-\frac{5}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+3=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=\frac{5}{4}\end{cases}}\)
=> MinG = -41/4 <=> x = -3 ; y = 5/4
H = -2x2 - 6x - 3y2 + 12y - 8
H = -2( x2 + 3x + 9/4 ) - 3( y2 - 4y + 4 ) + 17/2
H = -2( x + 3/2 )2 - 3( y - 2 )2 + 17/2
\(\hept{\begin{cases}-2\left(x+\frac{3}{2}\right)^2\le0\forall x\\-3\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-2\left(x+\frac{3}{2}\right)-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{3}{2}=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)
=> MaxH = 17/2 <=> x = -3/2 ; y = 2
I = \(\frac{6}{x^2-6x+30}\)
Để I đạt GTLN => \(x^2-6x+30\)đạt GTNN
Ta có : x2 - 6x + 30 = ( x2 - 6x + 9 ) + 21 = ( x - 3 )2 + 21 ≥ 21 ∀ x
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxI = \(\frac{6}{3^2-6\cdot3+30}=\frac{6}{21}=\frac{2}{7}\)
1 Tìm giá trị lớn nhất: A=6x-x^2+1
2 Tìm giá trị nhỏ nhất: B=2x^2-x^3+3
1) \(A=-\left(x^2-6x-1\right)=-\left(x^2-2.3x+9-10\right)\)
\(=-\left(x-3\right)^2+10\)
\(=10-\left(x-3\right)^2\le10\) ( vì \(\left(x-3\right)^2\ge0\) với mọi x)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
Vậy Max A = 10 tại x=3.
Cho \(f\left(x\right)=x^2+6x+15\)
Hãy tìm giá trị của x để f(x) đạt giá trị nhỏ nhất hoặc giá trị lớn nhất
Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)
Vậy Min = 6 <=> x = - 3
Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo
Vậy f(x) không có giá trị lớn nhất .
Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)
Có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)
\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0
x+3 = 0
x=-3
Vậy GTNN của f(x) là 6 khi x=-3
Chúc bạn học tốt!
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
Tìm giá trị nhỏ nhất của biểu thức
x.(x-6)
-> x^2 - 6x
-> x^2 - 6x + 9 - 9
->(x-3)^2 - 9
-> giá trị nhỏ nhất là 3
tìm giá trị nhỏ nhất
a)\(\frac{4}{-x^2-6x+10}\)
b)\(\frac{x^2}{2}-\frac{x}{6}+3\)
c)x.(x+1)(x2+x-4)
tìm giá trị lớn nhất
\(\frac{5}{2x^2-6x+10}\)
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1