So sánh số hữu tỉ : -1/25 và 1/1225
cho a,b thuộc z , b>0 . So sánh 2 số hữu tỉ a/b và a+1/ b+1
Xét 3 TH :
1) a < b
Khi đó ta có ab + 1a < ab + 1b hay a(b+1) < b(a+1)
Chia 2 vế cho b(b+1) ta được a/b < (a+1)/(b+1)
2) a = b ---> a/b = (a+1)/(b+1) = 1
3) a > b
Khi đó ta có ab + 1a > ab + 1b hay a(b+1) > b(a+1)
Chia 2 vế cho b(b+1) ta được a/b > (a+1)/(b+1)
Tóm lại
a/b < (a+1)/(b+1) nếu a < b
a/b = (a+1)/(b+1) nếu a = b
a/b > (a+1)/(b+1) nếu a > b
Qui đồng mẫu số:
a/b = a(b + 1)/ b(b + 1) = ab + 1a/ b(b + 1)
a+1/ b+1 = ( a + 1)b / (b + 1)b = ab+1b/ b(b+1)
Vì b>o nên mẫu của 2 phân số trên dương. Chỉ cần so sánh tử số:
So sánh ab+1a và ab+1b
+) Nếu a<b thì tử phân số thứ 1< tử phân số thứ 2
+) Nếu a=b => 2 phân số bằng nhau (=1)
+) Nếu a>b thì tử phân số thứ 1> tử phân số thứ 2
1) So sánh bằng cahcs nhanh nhất
-13/38 và 29/-88
2) Cho a, b thuộc Z; b>0. So sánh 2 số hữu tỉ a/b và a+2001/b+2001
Ta có: 1/3 = 13/39
=> 13/38 > 13/39 = 1/3
1/3 = 29/87
=> 29/88 <29/87=1/3
Vì 13/38 >1/3 > 29/88 nên -13/38 < -1/3 < -29/88
Vậy -13/38 < -29/88
b)Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
qui đòng mẫu số ta có:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
vì b>0 nên mẫu số của 2 phân số trên đều dương . chỉ cần so sánh tử số
so sánh ab+2001a với ab+2001b
- nếu a<b => tử số phân số thứ 1 < tử số phân số thứ 2
=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
- nếu a=b thì 2 phân số = nhau và =1
-nếu a>b =>tử số phân số thứ nhất lớn hơn tử số phân số thứ 2
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
so sánh số hữu tỉ sau bằng cách nhanh nhất :
-12/19 và -14/17
Cho a,b thuộc Z, b>0. So sánh 2 số hữu tỉ a/b và a+2015/b+2015
Câu hỏi của Nguyenvananh33 - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
dựa vào bài đó mà lm
Xét các tích: a(b+2015) và b(a+2015) tức ab+2015a và ab+2015b
Vì b>0 => b+2015 > 0
*Khi a>b <=> 2015a > 2015b
<=>ab+2015a > ab+2015b
<=>a(b+2015) > b(a+2015)
<=> \(\frac{a}{b}>\frac{a+2015}{b+2015}\)
*Khi a=b <=> 2015a = 2015b
<=>ab+2015a = ab+2015b
<=>a(b+2015) = b(a+2015)
<=> \(\frac{a}{b}=\frac{a+2015}{b+2015}\)
*Khi a<b <=>2015a < 2015b
<=>ab+2015a < ab+2015b
<=>\(\frac{a}{b}< \frac{a+2015}{b+2015}\)
Vậy với b>0 thì:
a>b <=> \(\frac{a}{b}>\frac{a+2015}{b+2015}\)
a=b <=>...................
a<b<=>...................
So sánh số hữu tỉ a/b (a,b thuộc Z khác 0) vs số 0 khi a,b cùng dấu và khi a,b khác dấu.
a/b > 0 <=> a, b cùng dấu
a/b < 0 <=> a, b # dấu
CMR
a, tổng của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
b,tích của 1 số hữu tỉ khác 0 với 1 số vô tỉ là 1 số vô tỉ
c, thương của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
ko bik làm thông cảm nha( OLM đừng xóa )
CMR
a, tổng của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
b,tích của 1 số hữu tỉ khác 0 với 1 số vô tỉ là 1 số vô tỉ
c, thương của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ
=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn
Vậy tổgg só là số vô tỉ
là số vô tỉ
cô Loan viết xong không xem lại đề
so sánh hai số hữu tỉ sau bằng cách nhanh nhất
-17/35 và -43/85
Viết số hữu tỉ - 7/20 dưới các dạng sau đây:
a, Tích của 2 số hữu tỉ
b, Thương của 2 số hữu tỉ
c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm
d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5
a, Tích của 2 số hữu tỉ
\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)
b, Thương của 2 số hữu tỉ
\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)
c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm
\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)
d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5
\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)