Những câu hỏi liên quan
LV
Xem chi tiết
TT
13 tháng 9 2015 lúc 1:42

Sử dụng hằng đẳng thức \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right),\) từ phương trình tương đương với \(\sqrt[3]{3x+1},\sqrt[3]{5-x},\sqrt[3]{2x-9}\) có hai số tổng bằng 0. Từ đây

\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}=0\Leftrightarrow3x+1=x-5\Leftrightarrow x=-3.\)
\(\sqrt[3]{2x-9}+\sqrt[3]{5-x}=0\Leftrightarrow2x-9=x-5\Leftrightarrow x=4.\)
\(\sqrt[3]{2x-9}+\sqrt[3]{3x+1}=0\Leftrightarrow2x-9=-3x-1\Leftrightarrow x=\frac{8}{5}.\)

 

Bình luận (0)
LV
Xem chi tiết
H24
Xem chi tiết
NT
1 tháng 9 2023 lúc 17:18

1) \(\sqrt[]{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)

2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)

\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)

\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)

mà \(\sqrt[]{1-x}\ge0\)

\(\Leftrightarrow pt.vô.nghiệm\)

3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)

\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)

\(\Leftrightarrow2x=50\Leftrightarrow x=25\)

Bình luận (0)
H9
1 tháng 9 2023 lúc 17:19

1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))

\(\Leftrightarrow3\sqrt{x-1}=21\)

\(\Leftrightarrow\sqrt{x-1}=7\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=49+1\)

\(\Leftrightarrow x=50\left(tm\right)\)

2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý) 

Phương trình vô nghiệm

3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=\dfrac{50}{2}\)

\(\Leftrightarrow x=25\left(tm\right)\)

4) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

5) \(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow\left|x-3\right|=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow x+x=3+3\)

\(\Leftrightarrow x=\dfrac{6}{2}\)

\(\Leftrightarrow x=3\)

Bình luận (0)
PL
1 tháng 9 2023 lúc 17:23

1) => 9(x-1)=\(21^2\)

=> 9x-9=441

=> 9x=450

=> x=50

2)=>\(\sqrt{1-x}\) + \(\sqrt{4\left(1-x\right)}\)-\(\dfrac{1}{3}\sqrt{16\left(1-x\right)}\)+5=0

=>\(\sqrt{1-x}\)\(\left(1+2-\dfrac{1}{3}.4\right)\)+5=0

=>\(\dfrac{5}{3}\sqrt{1-x}\) +5=0

=>\(\sqrt{1-x}\)=-3

Phuong trinh vo nghiem

 

Bình luận (0)
NA
Xem chi tiết
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:18

a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)

\(\Leftrightarrow2x+9=5-4x\)

\(\Leftrightarrow6x=-4\)

hay \(x=-\dfrac{2}{3}\left(nhận\right)\)

b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)

\(\Leftrightarrow2x-1=x-1\)

hay x=0(loại)

c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2+3x=x\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
KK
30 tháng 8 2021 lúc 20:36

a. \(\sqrt{2x+9}=\sqrt{5-4x}\)

<=> 2x + 9 = 5 - 4x 

<=> 2x + 4x = 5 - 9

<=> 6x = -4

<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)

Bình luận (0)
NT
30 tháng 8 2021 lúc 21:39

d: Ta có: \(\sqrt{2x^2-3}=\sqrt{4x-3}\)

\(\Leftrightarrow2x^2-3=4x-3\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
LL
Xem chi tiết
NT
25 tháng 11 2023 lúc 10:56

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

Bình luận (0)
TQ
Xem chi tiết
PT
Xem chi tiết
NT
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Bình luận (0)
H24
Xem chi tiết
TH
6 tháng 10 2023 lúc 22:30

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

Bình luận (1)
AH
7 tháng 10 2023 lúc 19:11

Lời giải:

a. ĐKXĐ: $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-3)(x+3)}-3\sqrt{x-3}=0$

$\Leftrightarrow \sqrt{x-3}(\sqrt{x+3}-3)=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}-3=0$

$\Leftrightarrow \sqrt{x-3}=0$ hoặc $\sqrt{x+3}=3$

$\Leftrightarrow x=3$ hoặc $x=6$ (tm)

b.

PT \(\Rightarrow \left\{\begin{matrix} x-3\geq 0\\ 4x^2-12x+9=(x-3)^2=x^2-6x+9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 3x(x-2)=0\end{matrix}\right.\)

$\Rightarrow$ không có giá trị $x$ nào thỏa mãn 

Vậy pt vô nghiệm.

c.

PT \(\Rightarrow \left\{\begin{matrix} 3x-1\geq 0\\ x^2+6x+9=(3x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ x^2+6x+9=9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 8x^2-12x-8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{3}\\ 4(x-2)(2x+1)=0\end{matrix}\right.\Leftrightarrow x=2\)

Bình luận (0)