giải pt nghiệm nguyên sau: \(\sqrt{9x^2+16x+96}\)=3x\(^2\)-16x-24
Giải pt nghiệm nguyên: \(3x-16y-24=\sqrt{9x^2+16x+32}\)
ĐKXĐ:\(9x^2+16x+32 ≥ 0 <=>(9x^2+12x+4)+4x+28≥0 <=>(3x+2)^2+4x+28 ≥0\)
Mà \((3x+2)^2 ≥0\)
\(=>4x+28 ≥0 =>x ≥-7\)
Phương trình\(<=> \)\((3x-16y-24)^2=9x^2+16x+32\)
Ta có:\(9x^2+16x+32=(3x+2)^2+4x+28 ≥(3x+2)^2\)
Tìm các số nguyên x,y thỏa mãn \(\sqrt{9x^2+16x+96}+16y=3x-24\)
\(\Leftrightarrow\sqrt{9x^2+16x+96}=3x-16y-24\)
Vế phải nguyên \(\Rightarrow\) vế trái nguyên
\(\Rightarrow9x^2+16x+96=k^2\)
\(\Rightarrow81x^2+144x+864=\left(3k\right)^2\)
\(\Leftrightarrow\left(9x+8\right)^2+800=\left(3k\right)^2\)
\(\Leftrightarrow\left(3k-9x-8\right)\left(3k+9x+8\right)=800\)
Pt ước số thật kinh dị với số ước của 800
Ta có \(9x^2+16x+96=\left(3x-24-16y\right)^2\)
\(\Leftrightarrow9x^2+16x+96=9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2\)\(\Leftrightarrow16x+96=\left(16y+24\right)\left(16y+24-6x\right)\)
\(\Leftrightarrow8\left(2x+12\right)=4\left(4y+6\right).2\left(8y+12-3x\right)\)
\(\Leftrightarrow2x+12=\left(4y+6\right)\left(8y+12-3x\right)\)\(\Leftrightarrow2x+12=32y^2+48y-12xy+48y+72-18x\)
\(\Leftrightarrow32y^2+96y-12xy-20x+60=0\)\(\Leftrightarrow32y^2+96y+60=12xy+20x\)\(\Leftrightarrow8y^2+24y+15=3xy+5x\)
\(\Leftrightarrow8y^2+24y+15=x\left(3y+5\right)\)\(\Leftrightarrow x=\dfrac{8y^2+24y+15}{3y+5}\)
\(\Leftrightarrow9x=\dfrac{9\left(8y^2+24y+15\right)}{3y+5}=\dfrac{72y^2+216y+135}{3y+5}\)\(=\dfrac{\left(72y^2+120y\right)+\left(96y+160\right)-25}{3y+5}\)\(=24y+32-\dfrac{25}{3y+5}\)
\(\Leftrightarrow24y+32-\dfrac{25}{3y+5}\in Z\)\(\Rightarrow3y+5\in U\left(25\right)=\left\{\pm1,\pm5,\pm25\right\}\)\(\Leftrightarrow3y\in\left\{-4,-6,-10,0,-30,20\right\}\)\(\Rightarrow y\in\left\{-2,-10,0\right\}\)
+) Với y=-2=> x=1
+) với y=-10=> x=-23
Vậy pt cho 2 cặp (x,y) nguyên =(1,-2),(-23,-10)
a,giải phương trình nghiệm nguyên
x2(y-1)+y2(x-1)=1
b, tìm tất cả nghiệm nguyên của pt
3x-16y-24=\(\sqrt{9x^2+16x+32}\)
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
Giải phương trình nghiệm nguyên:
\(x^2+2y^2-2xy+4x-3y-26=0\)
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
E cần gấp ạ!
Ai cho đề lớp 6 zậy. Giải xong bài chắc die lun á
tìm nghiệm nguyên của phương trình
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
các bản giải chi tiết ra giùm mình nha! khúc nào mà kiến thức vi diệu quá ấy , thì các bạn ghi lời giải thích giùm mình.
cảm ơn các bạn nhiều !!!!
\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)
\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)
\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)
Đến chỗ này phân tích kiểu j được nhỉ
Tìm tất cả các nghiệm nguyên của phương trình \(3x-16y-24=\sqrt{9x^2+16x+32}\)
1. Tim nghiem nguyen cua pt:
\(\sqrt{9x^2+16x+96}=3x-16y-24\)
2. Tim nghiem nguyen duong:
\(2+\sqrt{x+\frac{1}{4}+\sqrt{x+\frac{1}{4}}}=4\)
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
có đúng đề không bạn
Giải phương trình ngiệm nguyên
3x-16y-24=\(\sqrt{9x^2+16x+32}\)
Tìm nghiệm nguyên của phương trình \(\left(3x-16y-24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow x\left(3y+5\right)=8y^2+24y+17\)
\(\Leftrightarrow x=\dfrac{8y^2+24y+17}{3y+5}\in Z\)
\(\Rightarrow9x=\dfrac{9\left(8y^2+24y+17\right)}{3y+5}\in Z\)
\(\Rightarrow24y+62-\dfrac{157}{3y+5}\in Z\)
\(\Rightarrow3y+5=Ư\left(157\right)=\left\{-157;-1;1;157\right\}\)
\(\Rightarrow y=...\)