CM: 3n = 4 với mọi n thuộc R.
CM: S= n2+3n-38 không chia hết cho 49 với mọi n thuộc N
mn giúp mk vs, mk cần gấp
giả sử s chia hết cho 49 => 4S=4n^2+12n-152 = (2n^2 + 3)^2 - 161 chia hết cho 7=> (2n^2 + 3)^2 chia hết cho 7 ( do 161 chia hết cho 7) => 2n^2 + 3 chia hết cho 7 => (2n^2 + 3)^2 chia hết cho 49 nhân ra ta đc 4n^2 + 12 n +9 chia hết cho 49 => 4n^2 + 12 n +9 -161 ko chia hết cho 49 (do 161 ko chia hết cho 49) => ko xảy ra điều giả sử => đpcm
Tìm ƯCLN của 2n+1 và 3n+4 với mọi n thuộc N
Gọi UCLN của ( 2n + 1 , 3n + 4 ) là d ( d thuộc N*)
=> 2n + 1 chia hết cho d => 3 x ( 2n + 1 ) chia hết cho d hay 6n + 3 chia hết cho d
=>3n + 4 chia hết cho d => 2 x ( 3n + 4 ) chia hết cho d hay 6n + 8 chia hết cho d
=> ( 6n + 8 ) - ( 6n + 3 ) = 5 chia hết cho d => d thuộc Ư của 5
Mà Ư của 5 là 1 và 5
Vậy nếu 2 số 2n + 1 và 3n + 4 nguyên tố cùng nhau thì UCLN của nó bằng 1
Vậy nếu 2 số 2n + 1 và 3n + 4 không nguyên tố cùng nhau thì UCLN của nó bằng 5
Gọi d= ƯCLN của (2n+1;15n+4)
=2n+1. =>6n+3
=3n+4. =>6n+8
=>1 chia hết cho d
Chứng minh
n.(n+1).(n+2).(n+3).(n+4) chia hết cho 5 với mọi n thuộc N.
(n+1).(3n+2) chia hết cho 2 với mọi n thuộc N
a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n
+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5
=> Biểu thức rên chia hết cho 5 với mọi n
b/
+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2
+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2
=> biểu thức chia hết cho 2 với mọi n thuộc N
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
Bài 1 : Tìm n thuộc Z , biết :
a, n^2 - 5n chia hết cho 25
b, 6n^2 - 3n chia hết cho 4
c, n^2 - 3 chia hết cho 7
d, 4n^2 -16 chia hết cho 3
Mọi người giúp em với ạ , ngày mai em phải nộp r
cm với mọi số nguyên dương,ta có
1^2+4^2+7^2+...+(3n-2)^2=n(6n^2-3n-1)/2
cm với mọi số nguyên dương,ta có
1^2+4^2+7^2+...+(3n-2)^2=n(6n^2-3n-1)/2
CM :
2n+3 và 3n+4 nguyên tố cùng nhau với n thuộc N
Đặt \(d=\left(2n+3,3n+4\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
Chứng tỏ rằng 2n + 3 và 3n + 4 là số nguyên tố cùng nhau với mọi n thuộc N
Gọi d là ƯCLN( 2n+3;3n+4)
=> 2n+3 chia hết cho d và 3n+4 chia hết cho d
=> (2n+3) - (3n+4) chia hết cho d
=> 3(2n+3) - 2(3n+4) chia hết cho d
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(2n+3; 3n+4) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau
Các bn trả lời nhanh giùm mình nha.
quá dễ:
Ta có: gọi ước chung lớn nhất của 2n + 3 và 3n + 4 là d
theo đề, ta lại có: (2n+3) : (3n+4) = d
3(2n+3) : 2(3n+4) = d
(6n+9): (6n + 8) = d
Suy ra d = 1
vậy UWCLN của 2n+3 và 3n+4 là 1
Do đó 2n+3 và 3n+ 4 là hai số nguyên tố cùng nhau