chứng minh bất đẳng thức bunhiacopxki nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì ax=by
Chứng minh bất đẳng thức (a^2 + b^2)(x^2 + y^2) >= (ax + by)^2
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(\text{ax}+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\), luôn đúng
ây za gặp anti fan nào tk sai 3 cái lun z tr :D
chứng minh bất đẳng thức \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\Leftrightarrow a^2x^2+b^2c^2+a^2y^2+b^2y^2\ge a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2-a^2x^2-2axby-b^2y^2\ge0\Leftrightarrow a^2y^2-2axby+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) luôn đúng!
Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)
Chứng minh các bất đẳng thức sau:
a. \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
b. \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh
Chứng minh bất đẳng thức sau: \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\le\left(ax+by+cz\right)^2\)
Sửa đề:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Xét hiệu:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)-\left(ax+by+cz\right)^2\)
\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz\)
\(=a^2y^2+a^2z^2+b^2z^2+b^2x^2+c^2y^2+c^2x^2-2axby-2bycz-2axcz\)
\(=\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)\)
\(=\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)
=> BĐT luôn đúng
chứng minh bất đẳng thức:
(a2+b2)(x2+y2)\(\ge\) (ax+by)2
\((a^2 +b^2).(x^2 +y^2) \ge (ax+by)^2\)
dấu " = " xảy ra khi \(\dfrac{a}{x} = \dfrac{b}{y}\)
Vì \(\dfrac{a}{x} = \dfrac{b}{y} \Rightarrow ay=bx\)
\((a^2 +b^2).( x^2 +y^2)= a^2.x^2 +a^2.y^2 +b^2.x^2 + b^2.y^2 \)
\(= a^2.x^2 + b^2.x^2 +b^2.x^2 +b^2.y^2 \)
\(= (ax)^2 +2.b^2.x^2 + (by)^2 \)
\(= (ax)^2 +2.ax.by + (by)^2\) (tách \(b^2.x^2= b.x.b.x = a.y.b.x= ax.by\))
\(= (ax+by)^2 \)
=> đpcm
(a2+b2).(x2+y2)≥(ax+by)2(a2+b2).(x2+y2)≥(ax+by)2
dấu " = " xảy ra khi ax=byax=by
Vì ax=by⇒ay=bxax=by⇒ay=bx
(a2+b2).(x2+y2)=a2.x2+a2.y2+b2.x2+b2.y2(a2+b2).(x2+y2)=a2.x2+a2.y2+b2.x2+b2.y2
=a2.x2+b2.x2+b2.x2+b2.y2=a2.x2+b2.x2+b2.x2+b2.y2
=(ax)2+2.b2.x2+(by)2=(ax)2+2.b2.x2+(by)2
=(ax)2+2.ax.by+(by)2=(ax)2+2.ax.by+(by)2 (tách b2.x2=b.x.b.x=a.y.b.x=ax.byb2.x2=b.x.b.x=a.y.b.x=ax.by)
=(ax+by)2
App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618
Chứng minh hàng đẳng thức sau: a)(a^2-b^2)^2+4(ab)^2=(a^2+b^2)^2 b)(a^2+b^2).(x^2+y^2)=(ax+by)^2
\(a,\left(a^2-b^2\right)^2+4\left(ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\\ =a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\\ b,\left(a^2+b^2\right)\left(x^2+y^2\right)\\ =a^2x^2+a^2y^2+b^2x^2+b^2y^2\\ \left(ax+by\right)^2=a^2x^2+2axby+b^2y^2\\ \Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ne\left(ax+by\right)^2\)
Hoặc áp dụng BĐT Bunhiacopski:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Dấu \("="\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 với x,y khác 0 thì a/x=b/y
Chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì ay-bx=0
Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
Vậy ta có điều phải chứng minh.
chứng minh đẳng thức:
(x+y+z)(a+b+c)=ax+by+cz với
x=a^2-bc
y=b^2-ac
z=c^2-ab