so sánh:
A=\(\dfrac{10^{1299}+1}{10^{1300}+1}\)
B=\(\dfrac{10^{1298}+10}{10^{1299}+10}\)
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
Cho \(A=\dfrac{10^{11}-1}{10^{12}-1}\); \(B=\dfrac{10^{10}+1}{10^{11}+1}\) So sánh \(A\) và \(B\)
Lời giải:
$B=\frac{10^{11}+10}{10^{12}+10}$
Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:
$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$
$\Rightarrow A< B$
so sánh
a)\(A=\dfrac{-2015}{2015.2016}\) và \(B=\dfrac{-2014}{2014.2015}\) b)A = \(\dfrac{10^{2009}+1}{10^{2010}+1}\) và \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
A=-2015/2015x2016
A=-1/2016
B=-2014/2014x2015
B=-1/2015
vi 2016>2015,-1/2016>-1/2015
vay A>B
b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)
Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)
Ta có: \(10^{2010}+1< 10^{2011}+1\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)
\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)
\(\Leftrightarrow10A>10B\)
hay A>B
so sánh \(A=\dfrac{10^{17}+1}{10^{18}+1}\)
\(B=\dfrac{10^{18}+1}{10^{19}+1}\)
Do \(\dfrac{10^{18}+1}{10^{19}+2}< 1\Rightarrow B< \dfrac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \dfrac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \dfrac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \dfrac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
So sánh A và B biết : \(A=\dfrac{10^{2006}+1}{10^{2007}+1},B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
So sánh:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\) và B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)
đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)
A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)
B = \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)
10A > 10B => A > B
So sánh A và B : \(A=\dfrac{20^{10}+1}{20^{10}-1}\) và \(B=\dfrac{20^{10}-1}{20^{10}-3}\)
Giải:
Ta có:
A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-1<2/2010-3 nên A<B
Chúc bạn học tốt!
1. Cho A = \(\dfrac{10^{2013}+1}{10^{2014}+1}\) và B = \(\dfrac{10^{2014}+1}{10^{2015}+1}\). Hãy so sánh A và B
2. so sánh ; 2\(^{332}\) và 3\(^{223}\)
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
so sánh:
A= \(\dfrac{20^{10}+1}{20^{10}-1}\)và B=\(\dfrac{20^{10}-1}{20^{10}-3}\)
Lời giải:
$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}$
$B=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}$
Vì $20^{10}-1> 20^{10}-3$
$\Rightarrow \frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}$
$\Rightarrow 1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}$
$\Rightarrow A< B$