cho tam giác ABC có BC=6cm, và AB=2.AC. xác định dạng tam giác ABC để diện tích tam giác ABC max
Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?
2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?
3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max
4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max
5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max
6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max
Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?
2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?
3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max
4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max
5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max
6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max
Cho tam giác ABC vuông tại a có AH vuông góc với BC và AB =6cm ;AC =8cm ;M,N lần lượt là hình chiếu của AH trên AB và AC 1.tính diện tích ABC 2.cmr AC ^2=HC.BC 3.cmr tam giác ABC đồng dạng với Tam giác AMN 4.tính các góc của Tam giác AMN
1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)
3: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
TK
1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC), trung tuyến AM. biết AB=6cm,AC=8cm
a,tính độ dài BC, AH
b, chứng minh tam giác HAC đồng dạng với tam giác ABC và tam giác ABH đồng dạng với tam giác CAH
c, tính diện tích tam giác AHM
cho tam giác ABC có AB=4,5cm AC=6cm BC=7cm.xác định dạng của tam giác ABC
a: AC=căn 10^2-6^2=8cm
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>AB/HA=BC/AC
=>AB*AC=AH*BC
c: S HAC=1/2*HA*HC=1/2*4,8*6,4=15,36cm2
Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max
cho tam giác ABC. Các điểm D, E, F lần lượt thuộc AB, AC, BC. chứng minh rằng: a) diện tích ADE trên diện tích ABC bằng AD*AE trên AB*AC . b) Trong 3 tam giác ADE, BDF, CEF tồn tại 1 tam giác có diện tích không vượt quá 1/4 diện tích ABC. Khi nào cả 3 tam giác đó cùng có diện tích = 1/4 diện tích ABC
Cho tam giác ABC có AB<AC, điểm D nằm giữa A và C sao cho góc ABD= góc ACB
a, CMR tam giác ABC đồng dạng với tam giác ADB, từ đo suy ra AB2=AC.AD.
b, Biết SABC=16cm2, AB=6cm, AC=8cm. Tính diện tích tam giác ADB.
c, Tia phân giác của góc A cắt BC tại E. Qua A kẻ đường thẳng vuông góc với AE cắt BC tại M. CMR MB.EC=MC.EB
a) Xét \(\Delta ABC\) và \(\Delta ADB\) có:
\(\widehat{A}\) chung
\(\widehat{ACB}=\widehat{ABD}\) (gt)
\(\Rightarrow\Delta ABC\) đồng dạng với \(\Delta ADB\) (g-g)
\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AB^2=AC.AD\)
cho tam giác ABC vuông tại A có góc B = 30°.Vẽ đường phân giác CD (D thuộc AB)
a)Chưng minh tam giác ABC đồng dạng vói tam giác ACD và AC^2 = AD×AB
b)Biết AC= 6cm ,tính BC và diện tích tam giác ABC
c)Tính chu vi tam giác DBC