Ôn tập: Tam giác đồng dạng

NU

Cho tam giác ABC vuông tại a có AH vuông góc với BC và AB =6cm ;AC =8cm ;M,N lần lượt là hình chiếu của AH trên AB và AC 1.tính diện tích ABC 2.cmr AC ^2=HC.BC 3.cmr tam giác ABC đồng dạng với Tam giác AMN 4.tính các góc của Tam giác AMN

NT
4 tháng 3 2022 lúc 20:06

1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=HC\cdot BC\)

3: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

Bình luận (0)
H24
4 tháng 3 2022 lúc 20:11

TK

1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VH
Xem chi tiết
L8
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DV
Xem chi tiết
ND
Xem chi tiết
NL
Xem chi tiết