Những câu hỏi liên quan
MK
Xem chi tiết
KM
Xem chi tiết
CL
Xem chi tiết
TD
29 tháng 5 2017 lúc 8:27

để chứng minh A > \(\frac{4}{3}\)ta tách tổng A thành 3 nhóm :

A = \(\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)

A > \(\frac{1}{30}.20+\frac{1}{50}.20+\frac{1}{70}.20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\)

để chứng minh A < 2,5 ta tách tổng A thành 6 nhóm :

A = \(\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)

A < \(\frac{1}{11}.10+\frac{1}{21}.10+\frac{1}{31}.10+\frac{1}{41}.10+\frac{1}{51}.10+\frac{1}{61}.10< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\)

Bạn có hiểu không chi le hay để mình giải thích cho

Bình luận (0)
TI
29 tháng 5 2017 lúc 8:29

Ta tách biểu thức thành 7 nhóm , t CÓ các nhóm sau : 

\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+...+\(\frac{1}{20}\)

- .....

Ta thấy tất cả các phân số trên đều > hơn \(\frac{1}{20}\)

=> \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+....+\(\frac{1}{20}\)\(\frac{10}{20}\)=\(\frac{1}{2}\) ( VÌ CÓ  10 phân số đều lớn hơn hoặc = \(\frac{1}{20}\))

Tương tự với 7 nhóm còn lại mỗi nhóm gồm 10 phân số ta được các phân số \(\frac{1}{3}\),\(\frac{1}{4}\),\(\frac{1}{5},\frac{1}{6},\frac{1}{7}\)

Ta cộng tổng các p/s \(\frac{1}{3},\frac{1}{4}\frac{1}{5},\frac{1}{6},\frac{1}{7}\)ta được p/s \(\frac{223}{140}>\frac{4}{3}\)

=> ĐIỀU PHẢI CHỨNG MINH

Mk chỉ làm được ở chỗ 4/3 < A thôi 

Vậy nhé bạn yêu wys!!!!!!!!!!!!!!

Bình luận (0)
TL
Xem chi tiết
IY
26 tháng 3 2018 lúc 13:03

ta có: \(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)

mà \(\frac{1}{11}+...+\frac{1}{20}>\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{21}+...+\frac{1}{30}>\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{31}+...+\frac{1}{60}>\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+...+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)

\(\Rightarrow A>\frac{4}{3}\left(1\right)\)

ta có: \(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)

\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)

mà \(\frac{1}{11}+...+\frac{1}{20}< \frac{1}{11}+...+\frac{1}{11}=\frac{10}{11}< \frac{10}{10}=1\)

\(\frac{1}{21}+...+\frac{1}{30}< \frac{1}{21}+...+\frac{1}{21}=\frac{10}{21}< \frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{31}+...+\frac{1}{40}< \frac{1}{31}+...+\frac{1}{31}=\frac{10}{31}< \frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{41}+...+\frac{1}{50}< \frac{1}{41}+...+\frac{1}{41}=\frac{10}{41}< \frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{51}+...+\frac{1}{60}< \frac{1}{51}+...+\frac{1}{51}=\frac{10}{51}< \frac{10}{50}=\frac{1}{5}\)

\(\frac{1}{61}+...+\frac{1}{70}< \frac{1}{61}+...+\frac{1}{61}=\frac{10}{61}< \frac{10}{60}=\frac{1}{6}\)

\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)\)

\(=1+1+\frac{9}{20}< 1+1+\frac{10}{20}=\frac{5}{2}=2,5\)

\(\Rightarrow A< 2,5\left(2\right)\)

từ (1); (2) \(\Rightarrow\frac{4}{3}< A< 2,5\left(đpcm\right)\)

CHÚC BN HỌC TỐT!

Bình luận (0)
TT
Xem chi tiết
VD
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
LN
3 tháng 6 2019 lúc 12:42

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

Bình luận (0)
LN
3 tháng 6 2019 lúc 12:44

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

Bình luận (0)
H24
3 tháng 6 2019 lúc 13:45

có \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A< \frac{1}{4}-\frac{1}{100}\)

vì \(\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

nên A < 1/4

Bình luận (0)
YP
Xem chi tiết
NK
12 tháng 3 2017 lúc 21:39

yêu cầu của đề bài là gì vậy bạn

Bình luận (0)
NT
12 tháng 3 2017 lúc 21:57

A = \(\left(\frac{1}{11}+\frac{1}{12}+.........+\frac{1}{20}\right)\)  +  \(\left(\frac{1}{21}+\frac{1}{22}+..........+\frac{1}{30}\right)\)\(\left(\frac{1}{31}+.....+\frac{1}{60}\right)\)+ ... + \(\frac{1}{70}\)

Nhận xét: 

\(\frac{1}{11}\)\(\frac{1}{12}\)+ ........  +  \(\frac{1}{20}\)\(\frac{1}{20}\)+\(\frac{1}{20}\)+........+\(\frac{1}{20}\)\(\frac{10}{20}\)>\(\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+.......+\frac{1}{30}>\frac{30}{60}>\frac{1}{2}\)

\(\frac{1}{31}+......+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+.......+\frac{1}{60}>\frac{30}{60}>\frac{1}{2}\)

A > \(\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+......+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}>\frac{4}{3}\)

Bình luận (0)
YP
12 tháng 3 2017 lúc 22:01

cảm ơn , phép 2 sai rùi nha

Bình luận (0)