Những câu hỏi liên quan
VV
Xem chi tiết
AH
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

Bình luận (0)
DP
Xem chi tiết
DT
6 tháng 8 2016 lúc 15:56

d)  D = x4 - 6x2 + 10

D = (X2)2 - 2. x2. 3 + 32 + 1

D = (x2 - 3)2 + 1

(x2 - 3) >= 0 với mọi x

(x2 - 3)+ 1 >=1 với moi5 x

Vậy GTNN của D là 1

Bình luận (0)
VK
Xem chi tiết
VK
3 tháng 9 2021 lúc 15:17

Giusp e ạ !

Bình luận (0)
MH
Xem chi tiết
MH
Xem chi tiết
AH
13 tháng 8 2021 lúc 22:48

Bài đã đăng rồi bạn lưu ý không đăng lại làm loãng box toán.

Bình luận (0)
TT
Xem chi tiết
TT
Xem chi tiết
KN
4 tháng 10 2020 lúc 21:36

Với giả thiết x2 - 4x + 1 = 0 thì\(B=x^5-3x^4-3x^3+6x^2-20x+2025=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2020=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2020=\left(x^3+x^2+5\right)\left(x^2-4x+1\right)+2020=2020\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
4 tháng 10 2020 lúc 21:46

Thank you nhiều nha . Chúc bạn học tốt. I love you <3

Bình luận (0)
 Khách vãng lai đã xóa
TT
4 tháng 10 2020 lúc 22:04

Bạn có thể giải tiếp cho mình ko vậy

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
HN
Xem chi tiết
NL
6 tháng 1 2022 lúc 13:11

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

Bình luận (0)