Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

tìm min \(M=x^4-2x^3+3x^2-4x+2025\)

H24
6 tháng 1 2024 lúc 17:35

\(M=x^4-2x^3+3x^2-4x+2025\\=(x^4-2x^3+x^2)+(2x^2-4x+2)+2023\\=x^2(x^2-2x+1)+2(x^2-2x+1)+2023\\=(x^2-2x+1)(x^2+2)+2023\\=(x-1)^2(x^2+2)+2023\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\x^2+2\ge2>0\forall x\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2\left(x^2+2\right)\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2\left(x^2+2\right)+2023\ge2023\forall x\)

\(\Rightarrow M\ge2023\forall x\) 

Dấu \("="\) xảy ra khi: \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_M=2023\) khi \(x=1\).

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
TL
Xem chi tiết
KV
Xem chi tiết
SM
Xem chi tiết
TH
Xem chi tiết
SS
Xem chi tiết
MG
Xem chi tiết
HH
Xem chi tiết
HT
Xem chi tiết