Cho tứ giác ABCD có B+C=180, AC là phan giác góc A. Chứng minh CB=CD
cho tứ giác giác lồi ABCD có B+D=180,CB=CD. chứng minh ragwf Ac là tia phan giác góc BAD.
Cho tứ giác ABCD có B+C=180, AC là phân giác góc A. Chứng minh CB=CD
Trên cạnh AD lấy điểm E sao cho AE = AB
Xét tam giác ABC và AEC có
AB = AE
góc BAC = góc EAC (AC là phân giác góc BAD )
AC là cạnh chung
=> tam giác ABC = tam giác AEC ( c - g - c )
=> BC = CE và góc ABC = góc AEC
tứ giác ABCD có góc A + góc B + góc C + góc D = 360 độ
mà góc A + góc C = 180 độ => góc B + góc D = 180 độ
từ góc ABC góc AEC và góc DEC + góc AEC = 180 độ => góc DEC = góc D
Do vậy tam giác CDE cân đỉnh C => DC = CE
từ BC = CE , DC = CE => CB=CD ( đpcm)
Vậy CB=CD
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
cho tứ giác ABCD có góc B + góc D= 180 độ, AC là tia phân giác của góc A. Chứng minh CB=CD
Cho tứ giác ABCD có CB = CD, góc B + D = 180 độ. Chứng minh AC là tia phân giác của góc A
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Cho tứ giác lồi ABCD có góc B+D=180, CB=CD. Chứng minh AC là tia phân giác của góc BAD
Cho tứ giác ABCD, có góc B+ góc D= 180 độ. AC là tia phân giác của góc A. Chứng minh CB=CD
Nếu được thì giúp em vẽ hình với ạ
Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)
\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))
Do đó: \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(Hai cạnh bên)
mà DA=BC(ABCD là hình thang cân)
nên CB=CD(đpcm)
cho tứ giác lồi ABCD có góc B=D = 180 độ, CB=CD. Chứng minh rằng AC là tia phân giác góc BAD
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
Tứ giác ABCD có góc B + góc D = 180 độ, CB = CD. Chứng minh AC là tia phân giác của góc BAD.