Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DC
Xem chi tiết
DC
17 tháng 10 2021 lúc 7:55

mn mn ơiii

Bình luận (0)
DC
17 tháng 10 2021 lúc 7:56

helllppppppppp

Bình luận (0)
NM
17 tháng 10 2021 lúc 8:07

\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)

Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)

\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)

Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)

Bình luận (1)
NH
Xem chi tiết
NT
18 tháng 12 2016 lúc 20:34

S = 3+3^2 + 3^3 +...+ 3^2016

= (3+3^2+3^3) +...+(3^2014+3^2015+3^2016)

=3(1+3+3^2) +.....+3^2014(1+3+32)

=13 ( 3+...+3^2014 ) chia hết cho 13

Bình luận (0)
NS
Xem chi tiết
AH
22 tháng 12 2021 lúc 8:55

Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$

$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$

$=1+13(3+3^4+...+3^{2014})$ 

$\Rightarrow A-1\vdots 13(1)$

Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$

$=1+40(3+....+3^{2013})$

$\Rightarrow A-1\vdots 5(2)$

Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$

$\Rightarrow A$ chia $65$ dư $1$

Bình luận (1)
NP
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
ND
Xem chi tiết
LH
Xem chi tiết
NV
3 tháng 10 2015 lúc 22:12

b.ab+ba chia hết cho 11

=>10a+b + 10b+a chia hết cho 11

=>10a+a + 10b+b chia hết cho 11

=>11a+11b chia hết cho 11(đfcm)

Bình luận (0)
HN
Xem chi tiết
LY
Xem chi tiết
H24
10 tháng 12 2020 lúc 20:40

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

Bình luận (0)

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

Bình luận (0)