NS

a) Cho A = 1 + 3 + 32 + 33 + ... + 32016 . Tìm số dư khi chia A cho 65 .

Giúp em với ạ thanghoa

AH
22 tháng 12 2021 lúc 8:55

Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$

$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$

$=1+13(3+3^4+...+3^{2014})$ 

$\Rightarrow A-1\vdots 13(1)$

Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$

$=1+40(3+....+3^{2013})$

$\Rightarrow A-1\vdots 5(2)$

Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$

$\Rightarrow A$ chia $65$ dư $1$

Bình luận (1)

Các câu hỏi tương tự
LY
Xem chi tiết
NC
Xem chi tiết
BT
Xem chi tiết
HN
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết
LP
Xem chi tiết
CP
Xem chi tiết
NH
Xem chi tiết