sqrt5
\(\sqrt{(\sqrt3 - \sqrt5 )^2} - \sqrt{(1-\sqrt5)^2} +\dfrac{ 3 }{\sqrt3}\)
\(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}+\dfrac{3}{\sqrt{3}}\)
\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|1-\sqrt{5}\right|+\dfrac{\left(\sqrt{3}\right)^2}{\sqrt{3}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}-1\right)+\sqrt{3}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}\)
\(=1\)
1/ Rút gọn các biểu thức sau :
a. \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}} \)
b.\(\sqrt{3-\sqrt5}- \sqrt{3+\sqrt5}\)
a) \(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
\(\Rightarrow\)\(A=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
b) bn lm tương tự
Rút gọn các biểu thức sau :
1/ \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}} \)
2/ \(\sqrt{3-\sqrt5}- \sqrt{3+\sqrt5}\)
1: \(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
2: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)
(3\(\sqrt12\) - 4\(\sqrt3 \) +\(\sqrt15\)).\(\sqrt3\) - 2\(\sqrt5\)
\(\left(3\sqrt{12}-4\sqrt{3}+\sqrt{15}\right)\cdot\sqrt{3}-2\sqrt{5}\)
\(=\left(6\sqrt{3}-4\sqrt{3}+\sqrt{15}\right)\cdot\sqrt{3}-2\sqrt{5}\)
\(=6+3\sqrt{5}-2\sqrt{5}=6+\sqrt{5}\)
(3\(\sqrt{12}\)-4\(\sqrt{3}\)+\(\sqrt{15}\)).\(\sqrt{3}\)-2\(\sqrt{5}\)
=\(\left(6\sqrt{3}-4\sqrt{3}+\sqrt{15}\right).\sqrt{3}-2\sqrt{5}\)
=\(\left(2\sqrt{3}+\sqrt{15}\right).\sqrt{3}-2\sqrt{5}\)
=\(6+\sqrt{45}-2\sqrt{5}\)
=\(6+3\sqrt{5}-2\sqrt{5}\)
=\(6+\sqrt{5}\)
1. Chứng minh đẳng thức $\sqrt{\left(\sqrt5 - 4\right)^2} - \sqrt5 + \sqrt{20} = 4$.
2. Rút gọn biểu thức $P = \left(\dfrac1{\sqrt x+2}+\dfrac1{\sqrt x-2}\right) : \dfrac2{x - 2\sqrt x}$, với $x > 0,$ $x \ne 4$.
a, \(\sqrt{\left(\sqrt{5}-4\right)^2}-\sqrt{5}+\sqrt{20}=4\)
\(VT=\sqrt{\left(4-\sqrt{5}\right)^2}-\sqrt{5}+\sqrt{20}=\left|4-\sqrt{5}\right|-\sqrt{5}+\sqrt{20}\)
\(=4-\sqrt{5}-\sqrt{5}+2\sqrt{5}=4\) hay \(VT=VP\)
Vậy ta có đpcm
b, Với \(x>0,x\ne4\)
\(P=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{2}{x-2\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}=\frac{x}{\sqrt{x}+2}\)
1.
Giả sử điều trên là đúng ta có:
\( \left | \sqrt{5}-4 \right |-\sqrt{5}+\sqrt{20}=4\)
Ta có: \(4>\sqrt{5}\)
\(\Rightarrow 4-\sqrt{5}- \sqrt{5}+\sqrt{20}=4\)
\(\Leftrightarrow 4-\sqrt{20}+\sqrt{20}=4\)
\(\Rightarrow đpcm\)
2.
\(P=\dfrac{x}{\sqrt{x}+2}\)
\((2\sqrt5 . \sqrt2 - 3 \sqrt{40} + \sqrt{90} :3) :\sqrt{640}\)
Tìm giá trị tuyệt đối của các số thực sau: \(-3,14; 41; -5; 1,(2); -\sqrt5\).
\(\left| { - 3,14} \right| = 3,14;{\rm{ }}\,\,\,\left| {41} \right| = 41;{\rm{ }}\left| { - 5} \right| = 5;{\rm{ }}\left| {1,\left( 2 \right)} \right| = 1,(2);{\rm{ }}\left| {- \sqrt 5} \right| = \sqrt 5.\)
Cho hình hộp chữ nhật $ABCD.A'B'C'D$. Biết $AC = \sqrt3,$ $CD' = 2$, $D'A = \sqrt5$. Tính côsin góc giữa hai mặt phẳng $(ACD')$ và $(A'B'C'D')$.
Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.
Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.
Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.
Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.
Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.
Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cosA′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.
Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.
là hình chiếu vuông góc của trên .
là hình chiếu vuông góc của trên mặt phẳng .
Do đó với là góc cần tìm.
Ta có .
.
Dùng công thức Hê rông ta có .
Vậy .
là hình chiếu vuông góc của trên .
là hình chiếu vuông góc của trên mặt phẳng .
Do đó với là góc cần tìm.
Ta có .
.
Dùng công thức Hê rông ta có .
Vậy .
Rút gọn biểu thức\(\sqrt (\sqrt3-1)^2 - \sqrt(\sqrt3+1)^2 +3\sqrt2\)
B) \(\sqrt(9-4\sqrt5) +\sqrt(\sqrt5+1)^2\)
C)
\(\sqrt25 +\sqrt49-2\sqrt16\)
D)
\(x^2 - 5 : x+\sqrt5 \)( chia dưới dạng phân số nha mấy bạn tại mình bấm k được)
E) \(x-4+\sqrt(16-8x +x^2)\)
Làm giúp mình nha mình cần gấp lắm làm rõ từng bước giúp mình nha mình sẽ chọn