Những câu hỏi liên quan
NH
Xem chi tiết
AN
14 tháng 6 2017 lúc 11:13

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{1}{abc}\left(a^6+b^6+c^6\right)\)

\(\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

Bình luận (0)
PT
Xem chi tiết
NN
15 tháng 2 2022 lúc 20:00

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:

\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)

\(\Rightarrow\)Ta cần chỉ ra được:

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)

Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

Cộng theo vế các bất đẳng thức trên ta được:

\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Vậy bất đẳng thức đã được chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
LL
23 tháng 11 2017 lúc 17:06

chứng minh \(\sqrt{2x+1}\)là số vô tỉ

Bình luận (0)
LC
Xem chi tiết
NL
3 tháng 7 2020 lúc 12:21

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

Bình luận (0)
NL
3 tháng 7 2020 lúc 12:25

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Bình luận (0)
LD
8 tháng 1 2021 lúc 22:31

1. bđt được viết lại thành

\(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Theo bđt AM-GM thì :

\(ab+bc\ge2\sqrt{ab\cdot bc}=2\sqrt{ab^2c}=2b\sqrt{ac}\)

Tương tự : \(bc+ca\ge2c\sqrt{ab}\)\(ab+ca\ge2a\sqrt{bc}\)

Cộng vế với vế

=> \(2\left(ab+bc+ca\right)\ge2\left(a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\right)\)

=> \(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)( đpcm )

Dấu "=" xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
LD
6 tháng 4 2021 lúc 13:53

Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)

Khi đó bất đẳng thức được viết lại thành :

\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2

<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
KN
6 tháng 4 2021 lúc 17:30

bài này mới được thầy sửa hồi chiều nè @@

Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )

BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )

Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PN
4 tháng 6 2021 lúc 9:00

cách ít lòng vòng hơn cách của quỳnh nhiều nè 

Ta có đẳng thức sau : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)( cách cm thì chỉ cần chuyển vế rồi dùng hđt thôi)

Khi đó : \(2VT=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Áp dụng bất đẳng thức phụ \(\frac{x^3+y^3}{x^2+xy+y^2}\ge\frac{1}{3}\left(x+y\right)\)có : ( biến đổi tương đương là được nhé )

\(2VT\ge\frac{1}{3}\left(a+b\right)+\frac{1}{3}\left(b+c\right)+\frac{1}{3}\left(c+a\right)=\frac{1}{3}.2.\left(a+b+c\right)\)

\(< =>VT\ge\frac{1}{3}\left(a+b+c\right)=\frac{a+b+c}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
H24
18 tháng 8 2019 lúc 8:34

By Cauchy-Schwarz, we have:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)

\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)

By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)

So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)

It is true by AM-GM ineq', so we have Q.E.D.

P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)

Bình luận (5)
H24
18 tháng 8 2019 lúc 8:35

Ấy nhầm:V

By Schur, we have \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

So we're only need to prove \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a\)

Còn lại y chang:v

Bình luận (0)
H24
18 tháng 8 2019 lúc 8:42

Làm màu bằng tiếng anh và cái kết...:V (nãy làm nhầm, phải sửa lại đó)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

Ta sẽ chứng minh \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\) (để từ đó suy ra đpcm)

Thật vậy, thêm 3abc vào hai vế, BĐT cần chứng minh tương đương:

\(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+3abc\).

Áp dụng BĐT Schur, \(VT=a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Do đó ta chỉ cần chứng minh \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

Hay \(ab^2+bc^2+ca^2\ge3abc\). BĐT này đúng theo AM-GM

Bình luận (5)
HL
Xem chi tiết
TN
9 tháng 7 2017 lúc 17:24

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

Bình luận (0)
GV
9 tháng 7 2017 lúc 9:54

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
Bình luận (0)
SK
Xem chi tiết
ML
12 tháng 8 2016 lúc 8:49

1.

\(\frac{a^5}{b^3}+ab\ge2\sqrt{\frac{a^5}{b^3}.ab}=2.\frac{a^3}{b}\)

Tương tự và cộng lại:

\(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(ab+bc+ca\right)\)(1)

Lại có: \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2a^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)\)

\(=ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-\left(ab+bc+ca\right)\ge0\)

Vậy từ (1) ta có đpcm.

2. 

\(\frac{a^5}{bc}+abc\ge2\sqrt{\frac{a^5}{bc}.abc}=2a^3\)

Tương tự và cộng lại 

\(A=\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge2\left(a^3+b^3+c^3\right)-3abc\ge a^3+b^3+c^3+3abc-3abc\)

\(\Rightarrow A\ge a^3+b^3+c^3=VP\)

Bình luận (0)
HA
Xem chi tiết
AH
22 tháng 2 2020 lúc 18:49

https://olm.vn/hoi-dap/detail/82505750499.html

Bình luận (0)
 Khách vãng lai đã xóa
AH
22 tháng 2 2020 lúc 18:49

Ở mục câu hỏi tương tự có bài đó bạn ơi

Bình luận (0)
 Khách vãng lai đã xóa
TT
22 tháng 2 2020 lúc 18:55

Bn vào link này nha!

https://olm.vn/hoi-dap/detail/82505750499.html

Hok tốt!

Bình luận (0)
 Khách vãng lai đã xóa