Những câu hỏi liên quan
LB
Xem chi tiết
NH
17 tháng 9 2023 lúc 16:36

Ta có : 
A = 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\)
5A = 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\)
=> 5A - A = ( 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\) ) - ( 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\) ) 
=> 4A =  \(5^{2024}\)- 1
Nhận thấy : 
                  \(5^{2024}\) - 1 > ​​\(5^{2024}\)
=> 4A <  \(5^{2024}\) 
                            V
ậy 4A <  \(5^{2024}\) ​

Bình luận (0)
NH
17 tháng 9 2023 lúc 16:36

Thấy hay tick hộ mk vs ạ

 

Bình luận (0)
TA
Xem chi tiết
MH
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Bình luận (0)
NT
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Bình luận (0)
TN
Xem chi tiết
H9
14 tháng 10 2023 lúc 11:43

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

Bình luận (0)
HC
14 tháng 10 2023 lúc 11:54

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

Bình luận (0)
H24
14 tháng 10 2023 lúc 12:02

khó v

Bình luận (0)
BT
Xem chi tiết
LD
23 tháng 12 2023 lúc 22:25

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3

 

Bình luận (0)
KJ
Xem chi tiết
LL
2 tháng 10 2021 lúc 16:44

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

Bình luận (0)
H24
27 tháng 10 2024 lúc 17:03

1990.1990 -1992.1988

 

Bình luận (0)
NN
Xem chi tiết
NH
7 tháng 12 2023 lúc 18:59

           B = 3 + 32 + 33 + 34 + ... + 3100

           B = 31 + 32 + 33 + 34+... + 3100

Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:

                     2   - 1  = 1

Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.

Vậy B có 100 hạng tử, vì 100 : 3  = 33 dư 1 

Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được 

B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3

B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3

B = 398. 13 + 395.13 + ... + 32.13 + 3

B = 13.(398 + 395 + ... + 32) + 3

Vì: 13. (398 + 395 + ... + 32) ⋮ 13 

⇒ B : 13 dư 3

 

            

              

 

 

 

 

Bình luận (0)
CP
Xem chi tiết
YN
9 tháng 2 2023 lúc 23:02

\(B=3+3^2+3^3+...+3^{100}\)

\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=3+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=3+3^2.13+...+3^{98}.13\)

\(=3+13\left(3^2+...+3^{98}\right)\)

\(\Rightarrow B⋮̸13\)

\(\Rightarrow B:13\) dư 3.

Bình luận (0)
CP
9 tháng 2 2023 lúc 22:16

Các bạn giải nhanh giúp mình nhé. Mình cần gấp. Thanks!

Bình luận (0)
NC
Xem chi tiết
NM
Xem chi tiết
NH
17 tháng 12 2023 lúc 18:47

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

Bình luận (0)