rút gọn biểu thức \(-\dfrac{\sqrt{x^2}}{x}\) với x>0 có kết quả là
Với x > y ≥ 0 , biểu thức: \(\dfrac{1}{y-x}\sqrt{x^6\left(x-y\right)^2}\)có kết quả rút gọn là
\(=\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)=-x^3\)
Rút gọn biểu thức \(\dfrac{x-1}{\sqrt{x}+1}\) với x ≥ 0 được kết quả là
A. x - 1
B. \(\sqrt{x}-1\)
C. x + 1
D. \(\sqrt{x}+1\)
Rút gọn biểu thức : \(2x^2\sqrt{\dfrac{9}{x^4}}\)với (x < 0) được kết quả là bao nhiêu?
Nhập đáp án của bạn:....
Rút gọn biểu thức \(\dfrac{y}{x}\)\(\sqrt[]{\dfrac{x^2}{y^4}}\) (với x >0, y >0) được kết quả là
a. -y
b. \(\dfrac{-1}{y}\)
c. y
d. \(\dfrac{1}{y}\)
1) Rút gọn biểu thức \(\sqrt{0,81x^2}\) ta được kết quả là ....
2) Rút gọn \(\dfrac{\sqrt{63y^2}}{\sqrt{7y}}\) (với y < 0) ta được kết quả là ....
\(1,=0,9\left|x\right|\\ 2,Sửa:\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3\left|y\right|=-3y\)
Rút gọn biểu thức: \(\dfrac{\sqrt{a^3}}{\sqrt{a}}\)với a>0, kết quả là
\(\dfrac{\sqrt{a^3}}{\sqrt{a}}=\dfrac{a\sqrt{a}}{\sqrt{a}}=a\)(với a>0)
Với a>0 ta có:
\(\dfrac{\sqrt{a^3}}{\sqrt{a}}=\dfrac{\sqrt{a^2\cdot a}}{\sqrt{a}}=\dfrac{\left|a\right|\cdot\sqrt{a}}{\sqrt{a}}=a\)( vì \(a>0\Rightarrow\left|a\right|=a\))
Cho biểu thức P = ( \(\dfrac{x+2}{x\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) + \(\dfrac{1}{1-\sqrt{x}}\) ) : \(\dfrac{\sqrt{x}-1}{2}\) với x ≥ 0 và x ≠ 1
a) Rút gọn biểu thức trên
b) Chứng minh P > 0 với mọi x ≥ 0 và x ≠ 1
a) \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)\(P=\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(P=\dfrac{2}{x+\sqrt{x}+1}\)
b) Mà với \(x\ge0\) và \(x\ne1\) thì
\(x+\sqrt{x}+1\ge0\) và \(2>0\) nên \(P>0\)
a: \(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2}=\dfrac{2}{x+\sqrt{x}+1}\)
b: x+căn x+1+1>=1>0
2>0
=>P>0 với mọi x thỏa mãn x>=0 và x<>1
Cho biểu thức A= \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\) với x>0 và x\(\ne\)1. Rút gọn biểu thức A
Sửa đề: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2}{x-1}\)
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)