Tìm các số x,y thoả ,mãn: |x|=1-y2
Giải hộ mk vs ạ
Thanksssssss
Tìm x :
x+2016/căn bậc hai của 25 - x+|-2016|/3 = x/2+1008
Giúp mk vs ạ, cho mk lời giải chi tiết nhé!
Hơi khó hiểu tí ạ
Thanksssssss
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Tìm các số nguyên x,y thoả mãn \(y=\dfrac{x^3+1}{x^4+1}\)
Giải hẳn cho mình ra với ạ. Cảm ơn các bạn rất nhiềuuuu
Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$
$\Leftrightarrow x^4+x\vdots x^4+1$
$\Leftrightarrow x^4+1+x-1\vdots x^4+1$
$\Leftrightarrow x-1\vdots x^4+1$
Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$
Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$
Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$
$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)
Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$
$\Leftrightarrow x^4+x\leq 0$
$\Leftrightarrow x(x^3+1)\leq 0$
$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$
Với $x=-1$ thì $y=0$
Với $x=0$ thì $y=1$
Vậy..........
tìm số ngyên x,y thoả mãn
y\(^2\)+2xy-3x-2=0
giúp mik vs ạ
Lời giải:
$y^2+2xy-3x-2=0$
$\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$
$\Leftrightarrow (x+y)^2=(x+1)(x+2)$
Dễ thấy với mọi $x\in\mathbb{Z}$ thì $(x+1, x+2)=1$ nên để tích của chúng là scp thì $x+1, x+2$ cũng là scp
Đặt $x+1=a^2; x+2=b^2$ với $a,b\in\mathbb{Z}$
$\Rightarrow 1=b^2-a^2=(b-a)(b+a)$
$\Rightarrow b-a=b+a=1$ hoặc $b-a=b+a=-1$
$\Rightarrow a=0\Rightarrow x=-1$
Khi đó:
$(x+y)^2=(x+1)(x+2)=0$
$\Rightarrow y=-x=1$
Vậy $(x,y)=(-1,1)$
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Tìm các số nguyên x, y, z đồng thời thoả mãn các điều kiện sau :
x2 = y - 1 ; y2 = z -1 ; z2 = x - 1
Số các bộ x,y,z thỏa mãn : (X^2-4)^2+(y^2-9)+(x-z)^4=0 các bn giải hộ mk vs thanks all trc ná !!!
Giải chi tiết hộ mk:
1/Tìm x, y nguyên thoả mãn \(x+y+xy+2=x^2+y^2\)
2/Cho a,b,c là các số thực dương thoả mãn điều kiện abc=1.chứng minh rằng:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Giải chi tiết hộ mk.
Cho x y là các số thực thoả mãn điều kiện \(x-y\ne0\) . Chưng minh rằng:
\(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\).
\(Vt=\left(x-y\right)^2+\frac{\left(1-xy\right)}{\left(x-y\right)^2}^2+2xy\ge2\left(1-xy\right)+2xy=2\)(AM-GM)