Những câu hỏi liên quan
PB
Xem chi tiết
CT
30 tháng 5 2017 lúc 17:30

Đáp án C

Xét tam giác AOB có AO = OB = R nên tam giác AOB cân tại O (1)

Theo tính chất hai tiếp tuyến cắt nhau có OM là đường phân giác của góc AOB (2)

Từ (1) và (2) suy ra: OM là đường trung trực của AB.

Ta có điểm N thuộc đường trung trực của AB nên NA = NB

Suy ra, tam giác NAB là tam giác cân tại N

Bình luận (0)
WC
Xem chi tiết
LH
Xem chi tiết
NT
1 tháng 6 2023 lúc 8:44

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

Bình luận (0)
DT
Xem chi tiết
TL
Xem chi tiết
NT
12 tháng 6 2023 lúc 22:10

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS

Bình luận (0)
TM
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
H24
18 tháng 1 2021 lúc 13:53

Nhờ các mod xóa giùm bài kia. Gõ $\LaTeX$ bị sai.

Sửa đề. Chứng minh CD // OM.

Ta có:

$$\widehat{COM}=\dfrac{\widehat{BOC}}{2} =\dfrac{180^o-\widehat{DOC}}{2}=\widehat{OCD}$$

(vì $\Delta OCD$ cân tại $O$ do $OC=OD=R.$)

Nên CD//OM (hai góc so le trong bằng nhau)

Bình luận (1)
VH
Xem chi tiết
RN
Xem chi tiết
VD
18 tháng 1 2024 lúc 0:03

Câu a),b) tự làm nhé , mình chỉ giúp câu c) thôi . 

OI vuông góc NP ( Do I là trung điểm của MP ) , OF vuông góc NP ( Do OF là đường trung trực của NP )
=> O,I,F thẳng hàng
Tam giác ONF vuông tại N , đường cao NI
=> ON^2 = OI.OF
Mà ON=OA
OA^2 = OH.OM
=> OH.OM=OI.OF
=> OH/OI=OF/OM
Xét tam giác OIM và tam giác OHF có
góc MOF chung
OH/OI=OF/OM
=> Tam giác OIM đồng dạng tam giác OHF
=> góc OHF=góc OIM (=90 độ )
OH vuông HF
mà OH vuông AB
=> A,B,F thẳng hàng
=> F nằm trên đường thẳng cố định AB khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài
Điều phải chứng minh

Bình luận (0)