VD

Từ M nằm ngoài đường tròn (O;R) kẻ các tiếp tuyến MP và MQ với đường tròn ( O;R ) , ( P và Q là các tiếp điểm ). Kẻ đường kính POA . Tiếp tuyến tại A với đường tròn (O;R) cắt PQ tại B . a) CM M,P,O,Q cùng thuộc 1 đường tròn đường kính OM . b) Gọi K là trung điểm của MO , tia PK cắt AQ tại I . CM PQ.PB=4R^2 và góc QBO = góc QAM

NT
11 tháng 12 2023 lúc 4:56

a: Xét tứ giác OPMQ có

\(\widehat{OPM}+\widehat{OQM}=90^0+90^0=180^0\)

=>OPMQ là tứ giác nội tiếp đường tròn đường kính OM

=>M,P,O,Q cùng nằm trên đường tròn đường kính OM

b: Xét (O) có

ΔPQA nội tiếp

PA là đường kính

Do đó: ΔPQA vuông tại Q

=>AQ\(\perp\)QP tại Q

=>AQ\(\perp\)PB tại Q

Xét ΔAPB vuông tại A có AQ là đường cao

nên \(PQ\cdot PB=PA^2=\left(2R\right)^2=4R^2\)

Bình luận (1)

Các câu hỏi tương tự
LH
Xem chi tiết
DM
Xem chi tiết
TT
Xem chi tiết
KA
Xem chi tiết
DM
Xem chi tiết
HN
Xem chi tiết
DD
Xem chi tiết
LT
Xem chi tiết
PB
Xem chi tiết