Những câu hỏi liên quan
TH
Xem chi tiết
NT
10 tháng 1 2022 lúc 8:18

Câu 1: 

a: =126+5=131

b: =-564-724+564+224=-500

c: =3x25+2-8

=75+2-8

=77-8

=69

d: =1024:32+140:70-49

=32-49+2

=-15

Bình luận (1)
TD
Xem chi tiết
NY
Xem chi tiết
H24
1 tháng 12 2018 lúc 14:19

Sai đề:

a+b<42=>

UCLN(a,b)<43

Vậy ko có số nào tm

Bình luận (0)
NY
1 tháng 12 2018 lúc 14:20

Đúng đề đó bạn thầy mình ra thế mà!

Bình luận (0)
H24
1 tháng 12 2018 lúc 14:23

Lúc thầy bạn tl xong thì tl cho mk bt cách làm vs nha

Bình luận (0)
TK
Xem chi tiết
AH
16 tháng 12 2023 lúc 22:39

Lời giải:

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.

Có: $BCNN(a,b)=dxy=140$

$a-b=d(x-y)=7$

$\Rightarrow \frac{xy}{x-y}=\frac{140}{7}=20$

$xy=20(x-y)$

Vì $(x,y)=1$ nên $(x,x-y)=(y,x-y)=1$

$xy=20(x-y)\Rightarrow xy\vdots x-y$. Mà $(x,x-y)=(y,x-y)=1$ nên $x-y=1$

$\Rightarrow xy=20$

$\Rightarrow x=5, y=4$

$d=7:(x-y)=7:1=7$

Do đó: $a=dx=7.5=35; b=dy=7.4=28$

Bình luận (0)
H24
Xem chi tiết
LD
3 tháng 2 2017 lúc 19:40

a= (140+7) : 2 = 73,5

b=140 - 73,5 = 66,5

t cho mjnh nha

Bình luận (0)
1H
19 tháng 11 2023 lúc 21:15

Gọi ƯCLN(a;b) = d, khi đó: a = dm;b = dn; (m,n) = 1, m > n

 

Ta có: a – b = 7 => d.(m – n) = 7 => 

 

TH1: d = 2 => m – n = 7 => a = m, b = n => BCNN(a,b) = m.n = 140 = 22.5.7

 

Ta có: 140 = 4.35 = 20.7 = 140.1 (m hoặc n là số chẵn do a – b = 7)

 

=> Không có số nào thỏa mãn.

 

TH2: d = 7 => m – n = 1 => a = 7m, b = 7n => BCNN(a,b) = 7.m.n = 140 => m.n = 20 => m = 5, n = 4 => a = 35 , b = 28

Bình luận (0)
NT
Xem chi tiết
DV
8 tháng 4 2015 lúc 10:12

Đặt ƯCLN(a;b)=d

Vậy a=dm   ;  b=dn      (m>n vì a-b là số nguyên dương)

a-b=dm-dn=d.(m-n)=7=7.1=1.7

Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980

Khi đó: a=7m ; b=7n  => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10

      + Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28

      +Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14

Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140

Khi đó: a=1m=m ; b=1n=n  => a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2 <=> a.b=140.1=35.4=28.5=70.2

  Kết luận .....

      

Bình luận (0)
VL
5 tháng 11 2016 lúc 8:59

a-b = 7 ;BCNN(a;b) = 140

=>140:m- 140:n =7

140 : (m-n) = 7

=>m-n = 20

m

nab
    
    
    
    
    

a,b ko co gia tri

Bình luận (0)
DV
13 tháng 11 2016 lúc 14:40

bài này không có giá trị vì chỉ có a−b=7a−b=7 nên ngoại trừ cặp số (14;7)(14;7) ra, gcd(a;b)=1gcd(a;b)=1
dễ thấy (14;7)(14;7) không thoả mãn.
ta có; lcm(a;b)=abgcd(a;b)=140⇒ab=140lcm(a;b)=abgcd(a;b)=140⇒ab=140  k cho mình đi

Bình luận (0)
HQ
Xem chi tiết
DV
25 tháng 6 2015 lúc 15:16

Đặt ƯCLN(a;b)=d

Vậy a=dm   ;  b=dn      (m>n vì a-b là số nguyên dương)

a-b=dm-dn=d.(m-n)=7=7.1=1.7

Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980

Khi đó: a=7m ; b=7n  => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10

      + Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28

      +Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14

Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140

Khi đó: a=1m=m ; b=1n=n  =>

a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2

<=> a.b=140.1=35.4=28.5=70.2

Đó chính là các giá trị a,b thỏa mãn

Bình luận (0)
BT
27 tháng 11 2017 lúc 20:14

sai rồi

Bình luận (0)
NT
30 tháng 11 2017 lúc 20:40

Mình cũng đồng ý với Bánh ngon mời thưởng thức. Mình thử lại rồi. Sai là cái chắc.

Bình luận (0)
SD
Xem chi tiết
NP
16 tháng 12 2017 lúc 23:39

- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1

  ⇒ BCNN (a;b) = c.m.n = 140 . TH1

     Mà a - b = 7 ⇒ c.m - c.n

                       ⇒ c.(m - n) = 7 . TH2

- Từ TH1 và TH2 ta có :\displaystyle 

c.m.n = 140

 c.(m - n) = 7

⇒ c ∈ ƯC (7;140) = { 1;7 }

• Với c = 1 

⇒ m.n = 140 ;  m - n = 7

→ Loại.

• Với c = 7 

⇒ m.n = 20 ;  m - n = 1

 ⇒ m = 5 ; n = 4  ⇒ a = 35 ; b= 28

Vậy  (a;b) thỏa mãn : (35;28)

Bình luận (0)
MH
20 tháng 5 2019 lúc 22:10

- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1

  ⇒ BCNN (a;b) = c.m.n = 140 . TH1

     Mà a - b = 7 ⇒ c.m - c.n

                       ⇒ c.(m - n) = 7 . TH2

- Từ TH1 và TH2 ta có :\displaystyle 

c.m.n = 140

 c.(m - n) = 7

⇒ c ∈ ƯC (7;140) = { 1;7 }

• Với c = 1 

⇒ m.n = 140 ;  m - n = 7

→ Loại.

• Với c = 7 

⇒ m.n = 20 ;  m - n = 1

 ⇒ m = 5 ; n = 4  ⇒ a = 35 ; b= 28

Vậy  (a;b) thỏa mãn :

 (35;28)

Bình luận (0)
NT
Xem chi tiết