PTDTTNT
2x2+12x+18-2y2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm cặp số (x,y) thõa mãn 4x2-12xy+2y2+12x-6y+8=0 sao cho y nhỏ nhất
Để tìm cặp số (x, y) thỏa mãn phương trình 4x^2 - 12xy + 2y^2 + 12x - 6y + 8 = 0 sao cho y nhỏ nhất, ta cần tìm giá trị nhỏ nhất của y trong phương trình này.
Để làm điều này, ta có thể sử dụng phương pháp hoàn thiện định thức. Trước tiên, ta nhân hai vế của phương trình với 2 để thu được phương trình tương đương:
8x^2 - 24xy + 4y^2 + 24x - 12y + 16 = 0
Tiếp theo, ta nhóm các thành phần chứa x^2, xy và y^2 lại với nhau:
(8x^2 - 24xy + 4y^2) + (24x - 12y) + 16 = 0
(2x - y)^2 + 2(6x - 3y) + 16 = 0
Bây giờ, ta để ý rằng (2x - y)^2 là một số không âm vì là bình phương của một số. Do đó, để giá trị của phương trình là nhỏ nhất, ta cần tìm giá trị nhỏ nhất của 2(6x - 3y). Điều này xảy ra khi 6x - 3y = 0, tức là 2x - y = 0.
Giải hệ phương trình này, ta có:
2x - y = 0 6x - 3y = 0
Từ phương trình thứ nhất, ta có y = 2x. Thay vào phương trình thứ hai, ta có:
6x - 3(2x) = 0 6x - 6x = 0 0 = 0
Phương trình này đúng với mọi giá trị của x và y. Do đó, không có giá trị cụ thể cho (x, y) thỏa mãn y nhỏ nhất trong phương trình ban đầu.
viết các biểu thức dưới dạng bình phương của tổng
a. 9x2+25-12xy+2y2-10y
b. y2+2y+5-12x+9x2
b:=y^2+2y+1+9x^2-12x+4
=(y+1)^2+(3x-2)^2
a:
SỬa đề: 5y^2
=y^2-10y+25+9x^2+4y^2-12xy
=(y-5)^2+(3x-2y)^2
2x2 + 4xy + 2y2 - 18
tìm gtnn (gtln) của
a) 4x2+12x+1 b) 4x2-3x+10
c)2x2+5x+10 d) x-x2+2
e) 2x-2x2 f) 4x2+2y2+4xy+4y+5
a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)
\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)
c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)
d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)
\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: Ta có: \(4x^2+12x+1\)
\(=4x^2+12x+9-8\)
\(=\left(2x+3\right)^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
b: Ta có: \(4x^2-3x+10\)
\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)
\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)
c: Ta có: \(2x^2+5x+10\)
\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)
1. Phân tích các đa thức sau thành nhân tử:
a) 15y + 12x;
b) x2 – 6x + 9;
c) y3 + 2y2 + 3y;
d) x2 + xy + 6x + 6y.
2. Tính nhanh:
a) 932 - 72;
b) 452 + 552 + 90 . 55
a) \(=3\left(5y+4x\right)\)
b) \(=\left(x-3\right)^2\)
c) \(=y\left(y^2+2y+3\right)\)
d) \(=x\left(x+y\right)+6\left(x+y\right)=\left(x+6\right)\left(x+y\right)\)
Giúp me zới!!!
Bài 1: Tìm giá trị nhỏ nhất:
a)A=x2-2xy+5y2+4y+51
b)B=121/-4xy2-12x+2
c)C=9/-2x2+4x-7
d)10x2+4y2-4xy+8x-4y+20
e)E=9x2+2y2+6xy-6x-8y+10
a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)
\(=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)
c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)
\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)
d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)
\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)
\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)
Tìm các số x,y,z sao cho x:y:z =4:5:6 và x2 -2y2 +z2=18
Ta có: x:y:z =4:5:6
⇒\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)
⇒\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)
⇒\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)
\(\dfrac{x}{4}=9\Rightarrow x=36\)
\(\dfrac{y}{5}=9\Rightarrow y=45\)
\(\dfrac{z}{6}=9\Rightarrow z=54\)
Cho hàm số y=2x^3+3x^2-2. Viết phương trình tiếp tuyến của đồ thị hàm số biết hệ số góc tiếp tuyến là k=12. A. y= 12x - 9 hoặc y= 12x +18 B. y= 12x - 9 hoặc y= 12x + 30 C. y= 12x + 15 hoặc y= 12x + 30 D. y= 12x + 15 hoặc y= 12x + 18
Thực hiện các phép tính sau:
a) 2 x − 1 − 2 x + 1 . x 2 + 2 x + 1 8 với x ≠ ± 1 ;
b) 4 y 3 − 4 y + 1 y + 2 : y − 2 y 2 + 2 y − y 2 y + 4 với y ≠ 0 và y ≠ ± 2 .
a) Quy đồng mẫu thức và sử dụng hằng đẳng thức rồi rút gọn thu được x + 1 2 ( x − 1 )
b) Tương tự a) thu được 2 2 − y