Những câu hỏi liên quan
TT
Xem chi tiết
NT
6 tháng 12 2023 lúc 19:22

\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)

=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)

=>\(3B-B=3^2+3^3+3^4+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)

=>\(2B=3^{2016}-3\)

=>\(2B+3=3^{2016}\) là lũy thừa của 3

Bình luận (0)
HT
Xem chi tiết
AH
13 tháng 2 2024 lúc 0:11

Lời giải:

$B=3+3^2+3^3+...+3^{2014}+3^{2015}$

$3B=3^2+3^3+3^4+....+3^{2015}+3^{2016}$

$\Rightarrow 2B=3B-B=3^{2016}-3$

$\Rightarrow 2B+3=3^{2016}$ là lũy thừa của $3$

Bình luận (0)
LT
Xem chi tiết
NM
15 tháng 8 2016 lúc 15:37

3B=32+33+34+32006

3B-B=32006-3

2B=32006-3

2B+3=32006

Vậy ta suy ra đpcm

Bình luận (0)
NH
15 tháng 8 2016 lúc 15:36

Ta có:

   3B=32+33+34+...+32006

-

    B=3+32+33+...+32005

------------------------------------------

=>2B=32016-3

=>2B+3=32016 (dpcm)

Chúc bạn học giỏi nha!!!

K cho mik vs nhé Le Duong Minh Thanh

Bình luận (0)
NL
15 tháng 8 2016 lúc 15:39

\(B=3+3^2+3^3+...+3^{2005}.\)'

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{2006}.\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{2006}\right)-\left(3+3^2+3^3+...+3^{2005}\right)\)

\(\Leftrightarrow2B=3^{2006}-3\)

\(\Leftrightarrow2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B+3 là 1 lũy thừa của 3

Bình luận (0)
TN
Xem chi tiết
NA
29 tháng 6 2016 lúc 10:30

ta có 

B= \(3+3^2+3^3+...+3^{2605}\)

=> 3B= \(3^2+3^3+...+3^{2606}\)

=> 3B-B=\(3^2+3^3+...+3^{2606}\)-(\(3+3^2+3^3+...+3^{2605}\))

=> 2B= \(3^{2606}-3\)

=> 2B+3=\(3^{2606}-3\)+3=32606

=> đpcm

Bình luận (2)
LD
29 tháng 6 2016 lúc 11:49

Ta có: B= 3+3 2+3 3+....+3 2005 

=> 3B=3 2+3 3+....+3 2005+3 2006

=> 3B-B=(3 2+3 3+....+3 2005+3 2006 )-(3+3 2+3 3+....+3 2005 )

=> 2B=32006 -3

=> 2B+3=32006  (đpcm)

Bình luận (1)
VL
Xem chi tiết
LB
22 tháng 7 2016 lúc 13:21

Ta có: B= 3+32+33+....+32005

=> 3B=32+33+....+32005+32006

=> 3B-B=(32+33+....+32005+32006)-(3+32+33+....+32005)

=> 2B=32006-3

=> 2B+3=32006 (đpcm)

Bình luận (0)
SG
22 tháng 7 2016 lúc 13:23

B = 3 + 32 + 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)

2B = 32006 - 3

2B + 3 = 32006 là lũy thừa của 3 ( đpcm)

Bình luận (0)
H24
22 tháng 7 2016 lúc 13:26

Ta có: B = 3 + 32 + 3+....+ 32005

=> 3B = 3+ 3+ .... +32005 + 32006

=> 3B - B = 32006-3

=> 2B = 32006 - 3

=> 2B+3 = 32006 (đpcm)

Bình luận (0)
H24
Xem chi tiết
DT
6 tháng 7 2015 lúc 10:26

Ta có: B= 3+32+33+....+32005

=> 3B=32+33+....+32005+32006

=> 3B-B=(32+33+....+32005+32006)-(3+32+33+....+32005)

=> 2B=32006-3

=> 2B+3=32006 (đpcm)

Bình luận (0)
DT
11 tháng 10 2016 lúc 19:54

3B = 3(3 + 3^2 + 3^3 +...........+ 3^2005)

= 3^2 + 3^3 + 3^4 + ......+ 3^2006

3B - B = (3^2 + 3^3 + 3^4 +......+ 3^2006) - (3 + 3^2 + 3^3 + ......+ 3 ^2005)

= 3^2006 - 3

=> B = (3^2006 - 3) : 2

Bình luận (0)
DT
11 tháng 10 2016 lúc 19:55

2B + 3 = 3^2006

Bình luận (0)
NM
Xem chi tiết
CD
14 tháng 10 2018 lúc 15:49

Xét 3B = 32 +33 +34 + ... + 3101

3B - B = (32 + 33 +34 + ... +3101) - (3 + 3+ 3+ ... +3100)

2B = 3101 - 3

2B + 3 = 3101 - 3 + 3

2B + 3 = 3101

Vậy 2B + 3 là một lũy thừa của 3 

Bình luận (0)
SG
Xem chi tiết
SL
5 tháng 7 2018 lúc 10:19

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.

Bình luận (0)
NH
Xem chi tiết
LH
9 tháng 8 2017 lúc 20:46

1) A = 1+2+2\(^2\) + ... + \(2^{200}\)

2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)

2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)

A = 2\(^{201}\) - 1

A+1 = 2\(^{201}\)

Vậy a + 1 = 2\(^{201}\)

2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)

3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)

3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)

2C = 3\(^{2006}\) - 3

2C+3 = 3\(^{2006}\)

Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )

Bình luận (0)