giá trị của \(\lim\limits_{x\to -∞} f(x)=\dfrac{2x-1}{\sqrt{x^2+1}-1}\)
1/ \(\lim\limits_{x\to 1}\) \(\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}\)
2/ \(\lim\limits_{x \to \ +\infty} \)\(x\left[\sqrt{4x^2+5}-\sqrt[3]{8x^3-1}\right]\)
3/ \(\lim\limits_{x\to 1}\)\(\dfrac{x^3-2x-1}{x^5-2x-1}\)
Giải giúp mình với ạ
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).
giá trị của \(\lim\limits_{x\to -∞} f(x)=\dfrac{\sqrt{x^2-3}}{x+3}\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-3}}{x+3}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2\left(1-\dfrac{3}{x^2}\right)}}{x+3}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x\cdot\sqrt{1-\dfrac{3}{x^2}}}{x\left(1+\dfrac{3}{x}\right)}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{1-\dfrac{3}{x^2}}}{1+\dfrac{3}{x}}\)
\(=\dfrac{-\sqrt{1-0}}{1+0}=-\dfrac{1}{1}=-1\)
chọn kết quả đúng của \(\lim\limits_{x\to +∞} f(x)=\dfrac{1+3x}{\sqrt{2x^2+3}}\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1+3x}{\sqrt{2x^2+3}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{3+\dfrac{1}{x}}{\sqrt{2+\dfrac{3}{x^2}}}=\dfrac{3+0}{\sqrt{2+0}}=\dfrac{3}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{2}\)
Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}\)
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\rightarrow\lim\limits_{x\rightarrow1}\left(f\left(x\right)-2x+1\right)=0\\ \rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=1\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}=\dfrac{\sqrt{3.1+1}-1-1}{\sqrt{4.1+5}-3.1-2}=0\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(a=\lim\limits_{x\rightarrow3}\dfrac{2x+3-x^2}{\left(x^2-4x+3\right)\left(\sqrt[]{2x+3}+x\right)}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(-x-1\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[]{2x+3}+x\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{-x-1}{\left(x-1\right)\left(\sqrt[]{2x+3}+x\right)}=...\)
\(b=\lim\limits_{x\rightarrow0}\dfrac{\left(x+1\right)^{\dfrac{1}{3}}-1}{\left(2x+1\right)^{\dfrac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{3}\left(x+1\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(2x+1\right)^{-\dfrac{3}{4}}}=\dfrac{2}{3}\)
\(c=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt[]{1+4x}-2x-1\right)+\left(2x+1-\sqrt[3]{1+6x}\right)}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{-4x^2}{2x+1+\sqrt[]{4x+1}}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{-4}{2x+1+\sqrt[]{4x+1}}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}\right)=...\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{x^2+1}+2x+1}{\sqrt[3]{2x^3+x+1}+x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x^2-x+1}-\sqrt[3]{2x+3}}{3x^2-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2+x}+\sqrt[3]{8x^3+x-1}}{\sqrt[4]{x^4+3}}\)
a/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}\sqrt{x^2+1}+\dfrac{2x}{x}+\dfrac{1}{x}}{\dfrac{x}{x}\sqrt[3]{\dfrac{2x^3}{x^3}+\dfrac{x}{x^3}+\dfrac{1}{x^3}}+\dfrac{x}{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}+2}{\sqrt[3]{2}+1}=+\infty\)
b/ \(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2.1^2-1+1}-\sqrt[3]{2.1+3}}{3.1^2-2}=...\)
c/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{\dfrac{4x^2}{x^2}+\dfrac{x}{x^2}}+x\sqrt[3]{\dfrac{8x^3}{x^3}+\dfrac{x}{x^3}-\dfrac{1}{x^3}}}{x\sqrt[4]{\dfrac{x^4}{x^4}+\dfrac{3}{x^4}}}=\dfrac{2+2}{1}=4\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2-2}+\sqrt[3]{x^3+1}}{\sqrt{x^2+1}-x}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2x+3}{\sqrt{2x^2-3}}\)
\(\lim\limits_{x\rightarrow\pm\infty}\dfrac{2x^2-1}{3-x^2}\)
a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x\sqrt{\dfrac{4x^2}{x^2}-\dfrac{2}{x^2}}-x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{1}{x^3}}}{-x\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4}-1}{-1-1}=\dfrac{3}{2}\)
b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2x}{x}+\dfrac{3}{x}}{-\sqrt{\dfrac{2x^2}{x^2}-\dfrac{3}{x^2}}}=\dfrac{2}{-\sqrt{2}}=-\sqrt{2}\)
c/ \(\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{2x^2}{x^2}-\dfrac{1}{x^2}}{\dfrac{3}{x^2}-\dfrac{x^2}{x^2}}=\dfrac{2}{-1}=-2\)
Tính các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-3}\dfrac{x+3}{x^2+2x-3}\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\left(1+x\right)^3-1}{x}\)
c) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-1}\)
d) \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
e) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x-5}{\sqrt{x}+\sqrt{5}}\)
f) \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
g) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\sqrt{x+3}-2}\)
h) \(\lim\limits_{x\rightarrow+\infty}\dfrac{1-2x+3x^3}{x^3-9}\)
i) \(\lim\limits_{x\rightarrow0}\dfrac{1}{x^2}\left(\dfrac{1}{x^2+1}-1\right)\)
j) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(x^2-1\right)\left(1-2x\right)^5}{x^7+x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\sqrt[3]{2x+1}}{x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x+5}-3}{\sqrt[3]{5x+3}-2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[4]{2x+3}+\sqrt[3]{2+3x}}{\sqrt{x+2}-1}\)
\(a=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-1+1-\sqrt[3]{2x+1}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x}{\sqrt[]{4x+1}+1}+\dfrac{-2x}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{4x+1}+1}+\dfrac{-2}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}\right)=...\)
\(b=\lim\limits_{x\rightarrow1}\dfrac{4\left(x-1\right)\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(x-1\right)\left(\sqrt[]{4x+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{4\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(\sqrt[]{4x+5}+3\right)}=...\)
\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(2x+3\right)^{\dfrac{1}{4}}+\left(2+3x\right)^{\dfrac{1}{3}}}{\left(x+2\right)^{\dfrac{1}{2}}-1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{1}{2}\left(2x+3\right)^{-\dfrac{3}{4}}+\left(2+3x\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}=3\)