Những câu hỏi liên quan
LN
Xem chi tiết
TH
9 tháng 8 2017 lúc 20:56

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

Bình luận (0)
NH
9 tháng 8 2017 lúc 20:59

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

Bình luận (0)
MS
9 tháng 8 2017 lúc 23:52

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

\(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 2-\dfrac{1}{100}\)

\(S< 2\rightarrowđpcm\)

Bình luận (0)
DB
Xem chi tiết
YN
14 tháng 3 2022 lúc 20:17

`Answer:`

\(S=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(S=\frac{1}{4.4}+\frac{1}{6.6}+\frac{1}{8.8}+...+\frac{1}{2n.2n}\)

\(S< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right).2n}\)

\(S< \frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)

\(S< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

\(S< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)\)

\(S< \frac{1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NH
Xem chi tiết
H24
20 tháng 12 2019 lúc 18:21

a)n.(n+1)/2

Bình luận (0)
 Khách vãng lai đã xóa
MH
Xem chi tiết
BH
27 tháng 3 2018 lúc 10:35

\(S=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Lại có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

=> \(S=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)

=> \(S< \frac{1}{4}\)

Bình luận (0)
KS
Xem chi tiết
DT
Xem chi tiết
H24
18 tháng 1 2023 lúc 13:09

số số hạng là : `(10-1)+1:1=10`

tổng là : `(10+1) . 10 : 2=55`

`S=1+9S=>1+9.55=496`

`---------------`

cho mình hỏi đề bạn kiểu j v đọc mãi ko hiểu:)))?

Bình luận (0)
H24
18 tháng 1 2023 lúc 13:06

S = 1+2+3+4+5+6+7+8+9+10 = 55

S = 1 + 9.55 = 496

Bình luận (0)
KL
18 tháng 1 2023 lúc 13:22

Đề sai mà em up lên hoài, ko sửa đề gì hết vậy em?

Bình luận (7)
VA
Xem chi tiết
NN
Xem chi tiết
NC
14 tháng 3 2019 lúc 10:30

Đặt

A= \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2n\right)^2}\)

=\(\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}\)

=> \(A=\frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4.n}< \frac{1}{4}\)

Bình luận (0)