Những câu hỏi liên quan
H24
Xem chi tiết
DH
Xem chi tiết
NM
15 tháng 12 2021 lúc 13:50

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

Bình luận (0)
AV
Xem chi tiết
AV
Xem chi tiết
DN
25 tháng 1 2020 lúc 16:08

Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
CT
11 tháng 11 2017 lúc 15:10

đề có nhằm hk bn theo mình là tìm gtnn ms đúng

Bình luận (0)
ND
8 tháng 3 2020 lúc 21:31

éo cho hình người chết làm cho à

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
LH
29 tháng 5 2021 lúc 18:28

Xét m=4 =>(d):y=1 =>Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1

Xét m=3 =>(d):x=-1=> Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1

Xét \(m\ne4;m\ne3\)

Gọi \(A=Ox\cap\left(d\right)\) \(\Rightarrow A\left(\dfrac{1}{m-4};0\right)\)\(B=Oy\cap\left(d\right)\Rightarrow B\left(0;\dfrac{1}{m-3}\right)\)

Gọi H là hình chiếu của O lên AB

Có \(OH^2=\dfrac{OA^2.OB^2}{OA^2+OB^2}=\dfrac{\left(\dfrac{1}{m-4}\right)^2.\left(\dfrac{1}{m-3}\right)^2}{\left(\dfrac{1}{m-4}\right)^2+\left(\dfrac{1}{m-3}\right)^2}\)

\(=\dfrac{1}{\left(m-4\right)^2\left(m-3\right)^2\left[\dfrac{1}{\left(m-4\right)^2}+\dfrac{1}{\left(m-3\right)^2}\right]}\)

\(=\dfrac{1}{\left(m-4\right)^2+\left(m-3\right)^2}\)

\(=\dfrac{1}{2m^2-14m+25}=\dfrac{1}{2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}}\le2\)

=> \(OH\le\sqrt{2}\)

=> Khoảng cách lớn nhất gốc tọa độ đến (d) là \(\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\) (thỏa)

Bình luận (1)
TH
29 tháng 5 2021 lúc 18:50

Xét điểm \(A\left(-1;1\right)\). Dễ thấy A thuộc (d). Gọi H là hình chiếu của O trên (d). Ta có \(OH\le OA=\sqrt{2}\). Dấu "=" xảy ra khi và chỉ khi \(H\equiv A\), tức là \(d\perp OA\).

Ta cần tìm m sao cho \(d\perp OA\). Phương trình đường thẳng đi qua O, A là
y = -x. Xét m = 4 thì đường thẳng (d) trở thành \(y=1\), đường thẳng này song song với trục hoành và không vuông góc với d. Xét m khác 4. Khi đó \(\left(m-4\right)x+\left(m-3\right)y=1\Leftrightarrow y=\dfrac{4-m}{m-3}x+\dfrac{1}{m-3}\). Để \(d\perp OA\) thì \(\dfrac{4-m}{m-3}.\left(-1\right)=-1\Leftrightarrow4-m=m-3\Leftrightarrow m=\dfrac{7}{2}\).

Vậy Max \(OH=\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\).

Bình luận (1)
DA
Xem chi tiết
PN
Xem chi tiết
OT
Xem chi tiết