Những câu hỏi liên quan
HL
Xem chi tiết
AH
7 tháng 10 2020 lúc 18:28

Lời giải:

$n>1\Rightarrow n\geq 2$

$n^4+4k^4=(n^2)^2+(2k^2)^2+2.n^2.2k^2-4n^2k^2$

$=(n^2+2k^2)^2-(2nk)^2=(n^2+2k^2-2nk)(n^2+2k^2+2nk)$

Ta thấy,

$n^2+2k^2-2nk=2(k-\frac{n}{2})^2+\frac{n^2}{2}\geq \frac{n^2}{2}\geq \frac{2^2}{2}=2$

$n^2+2k^2+2nk\geq n^2\geq 4$

Do đó $n^4+4k^4$ là tích của 2 số mà mỗi số đều $\geq 2$ nên $n^4+4k^4$ là hợp số.

Bình luận (0)
NH
Xem chi tiết
LL
25 tháng 11 2024 lúc 20:05

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

Bình luận (0)
HL
Xem chi tiết
HT
Xem chi tiết
B2
Xem chi tiết
NP
20 tháng 11 2018 lúc 19:18

Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi

Bình luận (0)
LG
Xem chi tiết
NL
Xem chi tiết
H24
5 tháng 12 2016 lúc 15:57

mình giải rồi không thấy ý kiến gì?

Bình luận (0)
BV
7 tháng 12 2017 lúc 9:28

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.

 

Bình luận (0)
BV
7 tháng 12 2017 lúc 9:30

Số các số hạng của S là: \(\frac{\left(2n-1-1\right)}{2}+1=n-1+1=n\).
S = 1 + 3 + 5 + ........ (2n - 1)
\(=\frac{\left(2n-1+1\right).n}{2}=n.n=n^2\).
Suy ra S là một số chính phương.

Bình luận (0)
NC
Xem chi tiết
H24
3 tháng 9 2017 lúc 22:34

Đề bài là:

Gọi n là số tạo bởi các số tự nhiên viết liên tiếp từ 16 đến 89.Tìm số tự nhiên k lớn nhất để n chia hết cho 3^k-

Cho mik hỏi tí ở chỗ 3^k- mấy?

Bình luận (0)
NC
3 tháng 9 2017 lúc 22:40

Khong co tru

Bình luận (0)
H24
3 tháng 9 2017 lúc 22:42

Bn ghi 3^k - ở cuối câu mà?

Bình luận (0)
NH
Xem chi tiết
LN
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Bình luận (0)
NH
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

Bình luận (0)