Cho tam giác ABC có BD và CE là hai đường cao. Chứng minh S 🔼AED / S 🔼ABC = cos^2A
Cho tam giác ABC nhọn, đường cao BD và CE
a) Tính cos A theo 2 cách. Từ đó suy ra tam giác AED ~ tam giác ACB
b) Chứng minh: S ADE = S ABC x cos2 A
c) A = ? để S ADE = S BECD
Cho tam giác nhọn ABC, hai đường cao BD và CE. Chứng minh rằng:
a)\(S_{ADE}=S_{ABC}.\cos^2A\)
b)\(S_{BCDE}=S_{ABC}.\sin^2A\)
Bạn tử kẻ hình nhé .
a)\(\Delta ABD~\Delta ACE\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2\widehat{BAC}\)
\(\Rightarrow S_{ADE}=S_{ABC}.cos^2\widehat{BAC}\)
b)Ta có : \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2\widehat{BAC}=S_{ABC}\left(1-cos^2\widehat{BAC}\right)=S_{ABC}.sin^2\widehat{BAC}\)
Cho tam giác ABC có các đường cao BD và CE Chứng minh: ∆ABD∽∆ACE Chứng minh: ∆ADE∽∆ABC Tính góc AED biết góc ACB=48 độ
Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔACE
Suy ra: AB/AC=AD/AE
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC
Suy ra: \(\widehat{AED}=\widehat{ACB}=48^0\)
Cho tam giác ABC nhọn, có 2 đường cao BD và CE. CMR:
a) SADE=SABC.\(\cos^2A\)
b) SABCD=SABC.\(\sin^2A\)
a) Ta thấy \(\Delta ABD\sim\Delta AEC\to\frac{AE}{AD}=\frac{AC}{AB}\to\Delta ADE\sim\Delta ABC\) theo tỉ số đồng dạng \(k=\frac{AD}{AB}=\cos A\to\frac{S_{ADE}}{S_{ABC}}=k^2=\cos^2A.\)
b) Chắc viết nhầm, không có tứ giác ABCD mà chỉ có BCDE. Ta có \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}\cos^2C=S_{ABC}\left(1-\cos^2C\right)=S_{ABC}\cdot\sin^2C.\)
Cho tam giác abc có ba góc nhọn hai đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng:
1. góc AED= góc ACB
2.BH*BD+CH*CE=BC^2
a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.
Cho 🔼ABC có AB<AC. Tia phần giác của góc A cắt cạnh BC tại D. Trên tia AC lấy điểm E sao cho AE=AB
a.)CMR: góc ABD= góc AED
b.) giác Mỹ là giao điểm của hai đường thẳng AB & ED. CMR: 🔼BDM=🔼ED
c.) Đường thẳng ADN cắt đoạn thẳng MC tại I. CMR: AI à đường trung tuyến của 🔼AMC. CMR: CD>BD.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: \(\widehat{ABD}=\widehat{AED}\)
b: Xét ΔBDM và ΔEDC có
\(\widehat{BDM}=\widehat{EDC}\)
DB=DE
\(\widehat{DBM}=\widehat{DEC}\)
Do đó: ΔBDM=ΔEDC
c: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
Cho tam giác ABC CÓ BAC =50 ,ABC =65 , HAI ĐƯỜNG TRUNG TUYẾN BN,CM CẮT NHAU TẠI G ,TIA AG CẮT BC TẠI D .VẼ MH VUÔNG GÓC VỚI BC TẠI K A)CHỨNG MINH TAM GIÁC ABC CÂN B)CHỨNG MING🔼 BMC=🔼 CNB C) CHỨNG MINH MH = NK D) CHỨNG MING AD +BN>1,4.AB
Cho tam giác ABC có ba góc nhọn, hai đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC, E thuộc AB)
a) Chứng minh rằng tam giác BHE đồng dạng với tam giác CHD
b) Chứng minh AB.AE = AC.AD
c) Chứng minh góc AED = góc ACB
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE; AD/AB=AE/AC
c: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
=>góc AED=góc ACB
Cho tam giác ABC có ba góc đèu nhọn , các đường BD và CE cắt nhau tại H . Gọi M,N,K lần lượt là trung điểm của AH,ED,BC:
a) CM : M,N,K thẳng hàng
b) Tính số đo góc MDN
c) AH cắt BC tại F . Kí hiệu S là diện tích . CM : \(\frac{S\Delta AED}{S\Delta ABC}=cos^2A\), \(\frac{SBDEC}{S\Delta ABC}=sin^2A\),\(\frac{S\Delta EDF}{S\Delta ABC}=1-cos^2A-cos^2B-cos^2C\)
d)CM : \(cos^2A+cos^2B+cos^2C< 1\), \(2< sin^2A+sin^2B+sin^2C< 3\)
ai tích mình mình tích lại cho