cho A= 5 + 5*2 + 5*3 + 5*4 + ... + 5*2022. Chứng minh A chia hết cho 93
cho A=5+5 mũ 2+5 mũ 3+.....+5 mũ 2022
chứng minh A chia hết cho 31
A = (5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2020+5^2021+5^2022)
= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^2020(1+5+5^2)
= 5.31+5^4.31+...+5^2020.31
= 31(5+5^4+...+5^2020) chia hết cho 31
Chứng minh rằng:
a) A = 5 + 5^2 + 5^3 + …+ 5^100 chia hết cho 5 nhưng không chia hết chi 25
b) B = 5 + 5^2 + 5^3 + …+ 5^20 chia hết cho 6
c) C = 5 + 5^2 + 5^3 + …+ 5^2022 + 5^2023 không chia hết cho 6
d) D = 1 + 2 + 2^2 + 2^3 + …+ 2^2021 chia hết cho 7
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
a, A = 5 + 52 + 53 + ... + 5100
A = 5. ( 1 + 5 + ...+ 599)
5 ⋮ 5 ⇒A = 5.(1 + 5 + ...+ 599) ⋮ 5 (1)
A = 5 + 52 + 53 + ... + 5100
A = 5 + 52.( 1 + 5 + 52 + ... + 598)
A = 5 + 25 . ( 1 + 5 + 52 +...+ 598)
Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25
5 không chia hết cho 25 nên
A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)
Kết hợp (1) và (2) ta có:
A ⋮ 5 nhưng không chia hết cho 25 (đpcm)
giúp mình với !!!!!!!!!!!!!!!!!!! đang cần gấp !!!!!!!!!!!!!!!
cho biểu thức a= 6+ 5\(^2\) + 5\(^3\) +........+ 5\(^{2022}\) + 5\(^{2023}\) . chứng minh 4a + 1 chia hết cho 5\(^{2023}\)
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
Câu 6:
a) Cho a^n chia hết cho 5( với a,n ϵN*). Chứng tỏ rằng: a^2+2022 chia hết cho 5.
b) Tìm tất cả các dố tự nhiên x,y để: 4^x +2^3= 3^y
a) C = 3 + 3^2 + 3^3 + 3^4 + ....+ 3^119 + 3^120
chứng minh rằng tổng hiệu sau chia hết cho 4
b) chứng minh A = 1 + 5 +5^2 + ..... + 5^402 + 5^403 + 5^404 chia hết cho 31
c) chứng minh D = 4 + 4^2 + 4^3 + 4^4 +... + 4^2011 + 4&2012 chia hết cho 5
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
tất cả đều có trong câu hỏi tương tự
b)
A=(1+5+52)+(53+54+55)+...(5402+5403+5404)
A=31.1+31.53+...+31.5402
A=31.(1+53+...+5402)
=>A chia hết cho 31
=>Đâu phải con ma
Cho A=1+5+5^2+5^3+5^4+5^5+...................+5^99
a,Chứng minh rằng A chia hết cho 6
b,Chứng minh rằng A chia hết cho 156
Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath
A= 75.( 4^2023 + 4^2022 +...+ 4^2 + 5) + 25. Chứng minh rằng A chia hết cho 4^2024. Giúp mình với ạ, cảm ơn nhiều.
a/ Chứng minh: A = 2^1 + 2^2 + 2^3 + 2^4 +......+ 2^2010 chia hết cho 3 và 7
b/ Chứng minh: B = 3^1 + 3^2 + 3^3 + 3^4 +......+ 3^2010 chia hết cho 4 và 13
c/ Chứng minh: C = 5^1 + 5^2 + 5^3 + 5^4 +......+ 5^2010 chết hết cho 6 và 31
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
Mà câu c bạn đánh chia hết thành chết hết rồi kìa
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)