Những câu hỏi liên quan
HN
Xem chi tiết
NT
3 tháng 12 2023 lúc 21:16

AD=2AB=10cm

=>\(AB=\dfrac{10}{2}=5\left(cm\right)\)

ABCD là hình chữ nhật

=>\(DB^2=DA^2+AB^2\)

=>\(DB^2=10^2+5^2=125\)

=>\(DB=\sqrt{125}=5\sqrt{5}\left(cm\right)\)

Gọi K là trung điểm của AB

Xét ΔDAB có DK là đường trung tuyến

nên \(\overrightarrow{DA}+\overrightarrow{DB}=2\cdot\overrightarrow{DK}\)

K là trung điểm của AB

=>\(KA=\dfrac{5}{2}=2,5\left(cm\right)\)

ΔKAD vuông tại A

=>\(DK^2=DA^2+AK^2\)

=>\(DK^2=10^2+2,5^2=106,25\)

=>\(DK=\dfrac{5\sqrt{17}}{2}\left(cm\right)\)

\(\left|\overrightarrow{AD}+\overrightarrow{BD}\right|=\left|-\overrightarrow{DA}-\overrightarrow{DB}\right|\)

\(=\left|\overrightarrow{DA}+\overrightarrow{DB}\right|=\left|2\cdot\overrightarrow{DK}\right|\)

\(=2\cdot DK\)

\(=2\cdot\dfrac{5\sqrt{17}}{2}=5\sqrt{17}\)

Bình luận (0)
HN
Xem chi tiết
NT
3 tháng 12 2023 lúc 10:55

\(\left|\overrightarrow{AB}+\overrightarrow{BD}\right|=\left|\overrightarrow{AD}\right|\)

\(=AD=10\left(cm\right)\)

Bình luận (0)
AD
3 tháng 12 2023 lúc 11:37

AD=10

Bình luận (0)
TN
Xem chi tiết
NA
Xem chi tiết
EN
Xem chi tiết
HN
26 tháng 8 2021 lúc 10:13

Sai thì thôi nha :>

Theo đề ra: ABCD là hình bình hành

\(vectoAD+vectoAB=vectoAC\) và \(vectoAB+vectoAC=vectoBD\)

\(\Leftrightarrow vectoAD=-vectoAB+vectoAC\)

\(\Leftrightarrow vectoAD=vectoAB+vectoAC-2vectoAB=vectoBD-2vectoAB=b-2a\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
27 tháng 8 2021 lúc 22:05

\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}=-\overrightarrow{AB}+\overrightarrow{AD}\)

\(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

suy ra \(2\overrightarrow{AD}=\overrightarrow{BD}+\overrightarrow{AC}\Leftrightarrow\overrightarrow{AD}=\frac{\overrightarrow{BD}+\overrightarrow{AC}}{2}=\frac{a+b}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 0:52

a) Ta có: \(\left\{ \begin{array}{l}AD//BC\\AD = BC\end{array} \right.\) (do tứ giác ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Bình luận (0)
DL
Xem chi tiết
NT
26 tháng 9 2021 lúc 14:21

a: \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{AD}\)

b: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{BD}-\overrightarrow{BD}=\overrightarrow{0}\)

 

Bình luận (1)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 1:12

a) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB} ;\;\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} .\)

b) \(\overrightarrow {AB} .\overrightarrow {AD}  = 4.6.\cos \widehat {BAD} = 24.\cos {60^o} = 12.\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {AD}  = {4^2} + 12 = 28.\\\overrightarrow {BD} .\overrightarrow {AC}  = (\overrightarrow {AD}  - \overrightarrow {AB} )(\overrightarrow {AB}  + \overrightarrow {AD} ) = {\overrightarrow {AD} ^2} - {\overrightarrow {AB} ^2} = {6^2} - {4^2} = 20.\end{array}\)

c) Áp dụng định lí cosin cho tam giác ABD ta có:

\(\begin{array}{l}\quad \;B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos A\\ \Leftrightarrow B{D^2} = {4^2} + {6^2} - 2.4.6.\cos {60^o} = 28\\ \Leftrightarrow BD = 2\sqrt 7 .\end{array}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\(\begin{array}{l}\quad \;A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {4^2} + {6^2} - 2.4.6.\cos {120^o} = 76\\ \Leftrightarrow AC = 2\sqrt {19} .\end{array}\)

Bình luận (0)
HV
Xem chi tiết