tam giác ABC,đường cao AH,kẻ phân giác AD của góc HAC,phân giác HE của góc AHC
CM:DE//AH
Cho tam giác ABC vuông tại A, phân giác AD.
a, Tính AB, AC; biết DB=15, DC=20
b, Đường cao AH, phân giác của góc HAB cắt HB tại E, phân giác của góc HAC cắt HC tại F. Tính AH, HE, HF
cho tam giác abc vuông tại a đường cao ah. Vẽ đường phân giác AD của góc HAC. Từ D kẻ DK vuông góc với AC. Chứng minh HD<DC
cho tam giác abc vuông tại a đường cao ah. Vẽ đường phân giác AD của góc HAC. Từ D kẻ DK vuông góc với AC. Chứng minh HD<DC
tam giác ABC vuông tại A đường cao AH, phân giác góc B cắt phân giác góc HAC tại M, phân giác góc Ccắt phân giác góc HAB tại N, vẽ AD là phân giác của tam giác ABC. Chứng minh MN//BC và tính MN theo cạnh tam giác ABC
cho tam giác ABC có góc A=90 độ, AB<AC. Kẻ đường cao AH vuông góc với BC. Kẻ AD là phân giác góc HAC. Kẻ BE là đường phân giác góc ABC. CMR BE vuông góc với AD
cac ban oi giup minh nhe
Goi F la giao diem cua BE va AH, I la giao diem cua BE va AD
ta co: goc ABC+ goc ACB=90 ( tam giac ABC vuong tai A)
goc HAC+ goc ACB=90 ( tam giac AHC vuong tai H)
===> goc ABC= goc HAC
ta co : goc HAD=1/2 goc HAC ( AD la tia p/g goc HAC)
goc FBH=1/2 goc ABC ( BE la tia p/g goc ABC )
goc ABC= goc HAC ( cmt)
--> goc HAD= goc FBH
ta co: goc BFH+ goc FBH =90 ( tam giac FBH vuong tai H)
goc FBH= goc HAD ( cmt)
goc BFH= goc AFI ( 2 goc doi dinh)
===> goc HAD+ goc AFI =90 hay goc FAI+ goc AFI=90
xet tam giac AFI ta co: goc AFI+ gic FAI+ goc AIF=180 ( tong 3 goc trong tamgiac )
ma goc AFI+ goc FAI =90 ( cmt )
nen 90+ goc AIF =180
--> goc AIF =180-90=90
--> AI vuong goc FI hay BE vuong goc AD tai I
Cho tam giác ABC có góc ACB=40 độ, đường cao AH. Tia phân giác của góc HAC cắt BC tại D. Kẻ Dk vuông góc với AC(k thuộc AC).
a, CM: tam giác AHD= tam giác AKD.
b, CM: AD vuông góc với HK.
c, Qua điểm C kẻ đường vuông góc với tia AD tai E. Chứng minh rằng các đường AH, KD, CE đồng qui.
d, CM: KC<KA.
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: AH=AK
DH=DK
=>AD là trung trực của HK
c: Gọi M là giao của DK với AH
Xét ΔAMC có
MK,CH là đường cao
MK cắt CH tại D
=>D là trực tâm
=>AD vuông góc MC
mà AD vuông góc CE
nên C,M,E thẳng hàng
=>AH,KD,CE đồng quy tại M
Tam giác ABC vuông tại A, AB= 6cm, AC= 8cm. Kẻ đường cao AH
a) Tính BC
b) so sánh các góc của tam giác ABC
c) Kẻ phân giác AD ( D thuộc BC) của góc HAC. Chứng minh tam giác ABD cân
d) Kẻ phân giác AE của góc BAH (E thuộc BC). Cm AB+AC= BC+ED
đường cao AH. AB=6cm AC=8cm a) chứng minh tam giác HAC đồng dạng tam giác ABC b) Tính BC, AH c) Vẻ AD là đường phân giác của góc BAC d) Tính tỉ số diện tích tam giác HAC và tam giác HAB
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có:
\(\widehat{AHC}=\widehat{BAC}=90^0\)
\(\widehat{C}\) CHUNG
suy ra: \(\Delta HAC~\Delta ABC\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\) \(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
\(\Delta HAC~\Delta ABC\) \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AC}{BC}\)
hay \(\frac{AH}{6}=\frac{8}{10}\) \(\Rightarrow\) \(AH=\frac{6.8}{10}=4,8\)
mik làm dc câu a vs b giống bạn à 2 câu khi kh biết làm
Cho tam giác ABC vuông tại A có đường phân giác BK. Kẻ KI vuông góc với BC
a) Chứng minh rằng tam giác ABK=tam giác IBK.
b)Kẻ đường cao AH của tam giác ABC. Chứng minh rằng AI là tia phân giác của góc HAC