Chứng tỏ:
a/ 92002 _ 72000 chia hết cho 10
b/ 6815 + 210 chia hết cho 10
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng tỏ:A=(n2+1)(n2-1) chia hết cho 30 với n không chia hết cho 10
Sai đề
Vd : n = 8 không chia hết cho 10
A = ( n2 + 1 ) ( n2 - 1 ) = ( 82 + 1 ) ( 82 - 1 ) = 65 * 63 = 4095 không chia hết cho 30
chứng tỏ:A=1+3+3^2+...+3^10+3^11 chia hết cho cả 5 và 8,B=1+5+5^2+...+5^7+5^8 chia hết cho 31
Ta có:
\(A=1+3+3^2+...+3^{10}+3^{11}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)
\(A=40+...+3^8.40\)
\(A=40.\left(1+...+3^8\right)\)
Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)
Vậy \(A⋮5\) và \(8\)
_________
Ta có:
\(B=1+5+5^2+...+5^7+5^8\)
\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)
\(B=31+...+5^6.\left(1+5+5^2\right)\)
\(B=31+...+5^6.31\)
\(B=31.\left(1+...+5^6\right)\)
Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)
Vậy \(B⋮31\)
\(#WendyDang\)
cho số tự nhiên n chia hết cho 3. Chứng tỏ:A=n3+n2+3 không chia hết cho 9
Ủa cái này có gì đâu:vv
Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)
Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)
-> Đpcm
Chứng tỏ:A=10n+ 18n-1 chia hết cho 27(với n là số tự nhiên)
Cho số tự nhiên n chia hết co 3.Chứng tỏ:A=n^3+n^2+3 không chia hết cho 9
n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2 chia hết cho 9
Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3
\(\Rightarrow\)A không chia hết cho 9(đpcm)
Chứng tỏ:A=31+32+33+...+360 chia hết cho 13
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{58}.13=13\left(3+3^4+...+3^{58}\right)⋮13\)
chứng tỏ:A=10n+18n-1 chia hết cho 27 (với n là số tự nhiên)
Cho các số tự nhiên a,b thoả mãn 2a + 9b chia hết cho 11. Chứng minh rằng (a + 10b)(2a + 96)(3a + 8b)....(10a + 6) chia hết cho 11^10
Cho:A=3+3^2+3^3+3^4+...+3^20 Chứng tỏ:A chia hết cho 3,4 và A có chia hết cho 12 không?Vì sao?
không chia hết cho 12 ghép ba số lại mà tính nhé chúc may mắn
A = 3 + 3^2 + 3^3 + ... + 3^20
A x 3 = 3^2 + 3^3 + 3^4 + ... + 3^21
A x 3 chia hết cho 3 => A chia hết cho 3
S=3+3^2+3^3+...+3^20=(3+3^2)+(3^3+3^4)+....+(3^19+3^20)
=3(1+3) +3^3(1+3)+....+3^19(1+3)
=3.4+3^3.4+...+3^19.4
=4(3+3^3+...+3^19) chia hết cho 4
S chia hết cho 3 vì mỗi số hạng của tổng S đều chia heetscho 3
Vì (3;4)=1 => S chia hết cho 12
Cho:A=3+3^2+3^3+3^4+...+3^100 Chứng tỏ:A chia hết cho 4 và A có chia hết cho 12 không?Vì sao?
A = 3 + 32 + 33 + 34 + ... 3100
A = 31 + 32 + 33 + 34 + ...... 3100
A = ( 3100 - 31 ) : 11
A = 398 - ( 32 + 34 )
A = 392
A không chia hết cho 12 vì 12 là thừa số nguyên tố chẵn
+) \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+....+3^{99}\left(1+3\right)\)
\(\Rightarrow A⋮4\)
+) \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=3\left(1+3+3^2\right)+.....\)( tương tự nhóm liên tiếp 3 số )
\(A=3.13+......⋮13\)
\(\Rightarrow A⋮̸12\)